Akash K Singh, PhD
IBM Corporation Sacramento, USA

Abstract

For century, there has been no change in the fundamental structure of the electrical power grid and vehicle networks. Current hierarchical, centrally controlled grid of the electrical grid is not best for growing demand. To address the challenges of the existing power grid, the new concept of smart grid and smarter planet are under research. The smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure, sensing and metering technologies, and modern energy management techniques based on the optimization of ondemand, energy and network availability. While current power systems are based on a solid information and communication infrastructure, the new smart grid needs a different and much more complex one, as its dimension is much larger and needs utmost performance. This paper addresses critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues and opportunities. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as to discuss the still-open research issues in this field. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

Keywords- Advanced metering infrastructure (AMI), communication technologies, quality-ofservice (QoS), smart grid, standards

I. INTRODUCTION

Modern power grid is the most complex human-made system, which is monitored by widearea monitoring system (WAMS). Providing timesynchronized data of power system operating states,WAMS will play a crucial role in next generation smart grid protection and control. WAMS helps secure efficient energy transmission as well as reliable and optimal grid management. As the key enabler of a smart grid, numerous sensors such as PMU and current sensors transmit real-time dynamic data, which is usually protected by encryption algorithm from malicious attacks, over wide-area-
network (WAN) to power system control centers so that monitoring and control of the whole system is possible. Security algorithms for power grid need to consider both performance and energy efficiency through code optimization techniques on encryption and decryption. In this paper, we take power nodes (sites) as platforms to experimentally study ways of energy consumptions in different security algorithms. First, we measure energy consumptions of various security algorithms on CrossBow and Ember sensor nodes. Second, we propose an array of novel code optimization methods to increase energy consumption efficiency of different security algorithms. Finally, based on careful analysis of measurement results, we propose a set of principles on using security algorithms in WAMS nodes, such as cryptography selections, parameter configuration, and the like. Such principles can be used widely in other computing systems with energy constraints.

A. Related Work

A large amount of works have been done on energy consumption of security algorithms and protocols in common network environment, such as the energy consumption of the SSL protocol in PC networks, the energy consumption of WEP inWi-Fi networks, etc. However, there are few research on the energy consumption of security algorithms in WAMSs. Recently, most of the energy consumption studies related to WAMSs are based on simulations. The energy consumption is usually measured based on the CPU computation time and the number of data packets. However, this is a coarse grain approximation. In simulation aspect, network simulations, such as NS2, TOSSIMM [5], and Atemu [6], can properly simulate the behaviors of the network protocols, but they are not able to simulate the single node well. Thus, the method mentioned above is not suitable for our study on the energy consumption of security algorithms in WAMSs. There are some instruction-level energy evaluation models for WAMSs, such as AEON [7], and PowerTOSSIM [8]. These two models first measure the currents of the sensor nodes, followed by partitioning the measured currents to different code segments and different components of sensor nodes. Finally, the energy consumption of a certain code segment or a certain component is calculated. However, these models are not suitable for commercial WAMS sensors, due to the fact that most of the manufacturers only provide software in the form of "black box." Even obtaining the source

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.553-584
code, inserting instruction for measuring is not convenient. To obtain the energy characteristics of security algorithms, there are some studies based on physical measurement.Wander et al. [9] has measured the energy consumption of the RSA and ECC on MICA2DOT sensor nodes. However, this method cannot be implemented with the whole version of code into the WAMS nodes. Gupta et al. [10] has pointed out that the size of memory consumption of standard code is close to 4 KB for cryptography algorithms such as DES. This means that the memory will not be enough to directly implement standard algorithms on some WAMS nodes. WAMS is an autonomic network consisting of a large number of sensor nodes deployed in the monitoring area. The sensor nodes are connected by an ad hoc network and communicate with the sink through multihop. In aWAMS, the sensor nodes are the basic parts of the implementation of information sensing and communication. Compared to other wireless network, the WAMS is a specific application oriented network, which has characteristics of large size and dynamic topology. A sensor node inWAMS is a system with multifunction, such as data collection, computation, and communication. Compared to other wireless network, the WAMS is a specific application oriented network, which has characteristics of large size and dynamic topology. A sensor node inWAMS is a system with multifunction, such as data collection, computation, and communication. Compared to common sensor systems, the WAMS sensor nodes have their constraints as listed below.

- Poor computation power. The sensors usually adopt MCU that has slow computation speed as their processors.
- Limited memory space. The ATmega128L processor has only 4 KB SRAM onchip. And the high-end CrossBow
Imote 2 has 256 KB onchip and 32 MB offchip.
- Tight power consumption constraint. Due to the limitations of deployed area, cost, and physical size, some WAMS
nodes are usually equipped with low capacity batteries.

Thus, there are strict requirements for consecutive execution time on nodes. Because of the strict constraints of computation resource and energy, the WAMS nodes can only execute simple computation tasks and communication tasks. Currently, the hardware/software codesign is a key part of WAMS study. PMU-based WAMS is a cyber-physical system where the Internet-based communication network overlays the physical equipment-based power grid [11], [12]. Cybersecurity is crucial for ensuring integrity and resiliency of future smart grid. The encryption design for secure WAMS data communication must
consider energy and bandwidth constraints. PMU was first invented in Virginia Tech in 1988 to measure phasors of voltage and current, frequency and real/reactive power in real-time with GPS time tagging [1], [13]. PMUs have thus been continuously enhanced and are now being deployed in substations. The PMU data are collected in a phasor data concentrator (PDC) to facilitate real-time power system situation awareness, analysis, operation, protection, and control [13]-[15]. With large scale integration of variable renewable energy integration, PMU-based smart grid will ensure power system stability and reliability.

II. WAMS SECURITY ISSUES
 A. Security Threats Encountered in WAMs

WAMSs use public communication channels, in which every device inside or outside the network may obtain the information. The attackers can directly destroy the WAMS nodes due to the open deployment of nodes.

B. Energy Constraint on Security Algorithms

In order to prevent the attacker from deciphering directly on WAMS nodes, the data on nodes should be encrypted before stored. Complete verification information needs to be inserted into original message, so that the data packets will not be modified maliciously. Thus, it is necessary to introduce proper ID verification mechanism into WAMSs to defend ID-based attack such as Sybil and node duplication attack. Although the security threats encountered byWAMSs are diverse, data encryption, integrity protection, and verification are the most basic security service requirements in WAMSs. In WAMSs, the stronger the security algorithm is, the more energy consumption on the CPU [21]. Thus, in order to satisfy the security requirement on the WAMS, energy consumption is the major factor that constrains security algorithms.

C. Security Level and Energy Consumptions

The limited energy and computation resources determine that the security mechanism in WAMS nodes should be implemented as simple as possible. Integrating security service directly and control systems.

D. Introduction

Power system faults cause changes in power system frequency and/or voltages due to the loss of generation or/and load. These changes depend on the power system robustness and its ability to respond to these changes in a short time. Each power system has a unique dynamic behaviour that depends on factors such as network transmission topology, load location (closed or far from generation location), generation capacity, type of generation (wind, hydro, nuclear, thermal plants), etc. The phenomena involved during a power system

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.553-584
disturbance/blackout can be classified in 5 main Hence, there is a need to assess and evaluate classes:

- Voltage collapse,
- Frequency collapse,
- Loss of synchronism,
- Large power swings
- Cascade of overloads.

Electrical networks are also more and more interconnected in order to improve the robustness of the electrical power system, to increase the exchange capacity between the electric power transmission system over a wider area that crosses state borders and to ensure mutual assistance among system operators (specially in case of wide area disturbance).

Two characteristics are essential for any electrical power system to maintain its stability and integrity:

- Avoid the cascading of an isolated power system fault over a wider area,
- time constants that are involved cover very different time scales.

The perturbations of the wave resulting from electrical short circuits propagate close to the speed of light. However Intelligent Electronic Devices (IEDs) as Protective Relays, Programmable Logic Controller, etc. operate in areas ranging from tens of milliseconds to seconds and SCADA or EMS in areas ranging from minutes to hours. In contrast to conventional protection devices, which provide local protection of individual equipment (transformer, generator, line, etc.), the wide area protection system provides comprehensive protection covering the whole power system. When compared to SCADA/EMS systems, that are responsible for network control and management, the wide area protection system is focused on maintaining power system integrity. The idea is that a wide area protection and optimization system shall complement rather than substitute any of the existing control and protection systems.

E. Use of WAMPAC

Faults in transmission system leading to more widespread load outages are very rare in most power systems, but if they occur they can have serious impacts on many activities in society. If a whole city or part of a region suffers a black out, the economic and societal impacts can be very significant, and consequently the requirements on security must be much higher in the transmission system as compared with the distribution level. Furthermore, the restoration after a major transmission system fault is a very complicated and laborious task. In stressed power system the risk of cascading events is of particular concern. Through cascading, the consequences of a single event can be spread over large geographical distances in a system.
different means of improving transmission system security. Wide Area Monitoring Protection And Control (WAMPAC) systems have been recently proposed as one such means:

- Preventive actions are implemented to avoid such phenomena to occur by using Wide Area Measurement Systems (WAMS).
- Curative actions are implemented to avoid the spreading and so saving the rest of the power system by using manual or automatic mechanisms depending of the quickness of the phenomena such as Wide Area Control and Protection Systems (WACS, WAPS).

A defense plan is a list of actions taken automatically or manually after a severe contingency (contains decision to take in order to minimize the consequences of severe disturbances) and is based on several studies which include: safety, emergency and restoration plans.

- The safety plan is a post-contingency manual corrective action made by the operator to reestablish the normal conditions and is based on preventive analysis of expected contingencies.
- The emergency plan tries to reduce contingencies effects based on automatic remote generation shedding and/or load shedding acting by frequency relays.

- The restoration plan fixes a procedure to recover the electricity after the system shut down.

The electric system is subject to uncertainties in permanence which can be grouped into four families:

- The hazards of consumption: Because of the character not storable electrical energy must be ensured at all times, adapting production to demand. So the electrical power system is controlled by the demand. One of the major factors is climatic (winter peak load, summer peak load).
- Climatic hazards. The electrical system (overhead line, cable, transformer, hydro power plant, cooling of the thermal and nuclear power plants) must cope with external environmental assaults as such as lightning, flood, storm, drought, cold, etc. which can conduct to short circuit faults, tripping of generation groups, etc.
- Equipment failures (isolation failure, bus bar fault, etc.) and external attacks as such as mechanical excavator server a power cable, aircraft crash, etc.
- Dysfunction related to human factors (design failure, poor commissioning, no maintenance, etc.) initiatives related to WAMPAC encompass the following essential elements.

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA) ISSN: 2248-9622 www.ijera.com
 Vol. 2, Issue 6, November- December 2012, pp.553-584

F. Unified Communication Architecture

The Unified Communication Architecture, will provide a unified communication infrastructure to support all present and future communication and networking needs for control and operation systems, and business needs. The Unified Communication Architecture is in the planning and designing stage.

G. SCEnet2 Deployment

The SCEnet2 is an on-going effort to establish a future communication backbone as part of SCE's Unified Communication Architecture. One of the main objectives of SCEnet2 is to move from dedicated routers and fixed bandwidth for each system to virtual connections sharing routers and bandwidth. Part of the SCEnet 2 will be developed through several on-going SCE capital projects.

H. Wide Area Situation Awareness System (WASAS)

The WASAS is a project involving deployment of PMU devices in 500 kV and 230 kV substations and grid control center situation awareness applications for supporting system operators in real-time decision making [9]. Its architecture design and component specifications were completed in 2009 and it will be procured and deployed in near future. WASAS is primarily based on the synchronized phasor measurement technology. It will utilize other wide-area information input, from sources such as Energy Management Systems (EMS), Supervisory Control and Data Acquisition (SCADA) and nonelectrical system data (weather, traffic, fire, earthquake, etc.) to provide additional information for system operators. As illustrated in Fig. 2, it will install four sub-systems at Grid Control Center (GCC) and AGCC locations: Operational Production (OP), Production Testing (PT=OP), Development (DEV) and Operator Training Simulator (OTS). It will implement a number of monitoring and alarm functions, such as voltage phase angle different monitoring.

I. Centralized Remedial Action Scheme (CRAS)

The CRAS project will replace existing individual RASs and accommodate any additional RASs in the future [10]. CRAS are special protection schemes (SPS) that enable an automatic protection system designed to maintain system reliability by detecting abnormal or predetermined system conditions and taking corrective actions other than (or in addition to) the isolation of faulted components. By centralizing the distributed RAS logic, the project will improve the annual RAS updates and maintenance efficiency and enhance grid reliability by reducing RAS logic overlapping and cascading outage risks. The conceptual system design was approved by WECC in 2008, which
consists of fully redundant identical A \& B systems, and triple redundant central controller for each system. SCE plans on procurement and deployment of the system in the near future. The Phase 1 of the project is to build the central controller facilities and migrate two selected existing RASs. Following the success of Phase 1, Phase 2 will migrate the remaining RASs. Concurrent with Phase 2 is accommodation of newer generation RASs.

J. Irvine SG Demonstration

This project is a demonstration of an integrated, scalable Smart Grid system. The primary focus of this project is for distribution applications and interoperability demonstrations. It may not have direct impact on WAMPAC as WAMPAC has more demanding performance requirements. However, it will serve as a technology reference for WAMPAC integration.

K. Data Traffic Estimation

It is very difficult to estimate how much data traffic will be generated when all these applications are sharing the communication infrastructure. Field experience is not yet available. However, the following assumptions can be made based on preliminary estimations of data traffic specified for WASAS and CRAS implementation. Assuming WASAS synchrophasor values are streamed as Ethernet UDP/IP packets with 60 packets per second and 16 synchrophasor measurements per packets, the uplink streaming traffic is around $100 \mathrm{~kb} / \mathrm{s}$. For CRAS data, assuming four substations trigger for state change and six substations mitigate, the uplink traffic is around $1.25 \mathrm{Mb} / \mathrm{s}$ and the downlink traffic is around $4 \mathrm{Mb} / \mathrm{s}$. WASAS streaming rates are modest compared to CRAS binary burst traffic rates, and it may eventually share one of the CRAS redundant pair uplinks. WASAS stream packets may be delayed by milliseconds during CRAS GOOSE burst. For future sharing of downlinks, it is not recommended until future generation with WASAS closed loop control, and it introduces the risk of opening CRAS critical dual redundant control VLANs to other connections and traffic.

III. INTEGRATED WAMPAC ARCHITECTURE

Despite differences among various WAM/WAC/WAP systems and capabilities, their similarities will favor an integrated WAMPAC system architecture design with the expected benefits:

1. Wide-range of data sharing: having access to all measurement data and the system/application generated output data will increase the data redundancy level for all functions and applications and reduce the overall system cost to achieve the same level of redundancy for each system.

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.553-584
2. Network/communication resources sharing: an integrated architecture will allow communication network sharing and increase redundancy.
3. Ease on system expansion: it will be much easier to add new measurement devices and new applications to an integrated system than to separate systems. This is particularly important for WAMPAC system as the technology and the applications that utilize the technology are rapidly developing and advancing. Reviewing the various SCE activities, and utilizing WASAS system and CRAS system architectures as main components, an integrated WAMPAC system architecture roadmap was developed and proposed to enable SCE to realize its Smart Grid strategy. Details may be adjusted throughout the migration process. Fig. 4 outlines the logical components of WAMPAC and their functions and relationships with other systems and entities. The Data module focuses on the components in data processing and storage for the WAMPAC system. The Visualization module provides an effective visual presentation interface for WAMPAC system users to comprehend the wide-area situation awareness information. The System \& Data Management module provides system management, such as device management, application management, etc., and the data management, retrieval, validation, storage, and delivery services within WAMPAC. It also provides system administration functions that allow WAMPAC to provide system configuration and security services. The Application module includes current and future synchrophasor-supported applications to service the needs of system operators and planners.

The WAMPAC system will interface with SCE's existing EMS/SCADA system and historian to exchange phasor data and network model data/configuration. It is envisioned that the
WAMPAC will interface with DMS, GIS and other corporate applications/users. External non-electrical data from other sources, such as weather reports (temperature, wind, storm, lightning, etc.), traffic conditions, solar flare, fire, and other information, will be connected and visualized to provide additional situation awareness information to system operators at control center. The WAMPAC will exchange synchrophasor data with other utilities and WECC through the NASPInet, if it becomes available during the system deployment.

C. Facilitate Dynamic Model Development and Renewable Impact Study

Much work has been done to resolve the issues of lacking proper generic models, particularly in recent years [12-14], to clearly define and explain the various renewable generation technologies and how they should be modeled for system studies. And
to continue the effort of developing and validating proper models for system planning and operational studies, it is necessary to have enhanced system monitoring to gain better understanding of the behavior of the various renewable generations under a variety of system conditions. In this respect, a side benefit from deployment of RAS is to assist model development and validation and help system planners and operators better understand the impacts of integrating renewable generation on the grid by continuously collecting data from the system with advanced Intelligent Electronic Devices (IEDs). IEDs in RAS particularly refer to the microprocessor based protection relays. Some recent ones are designed to support the IEC 61850 standard [15], which is the global standard for information model and information exchange for substation automation. In some recent industrial RAS applications [16-17], IEC 61850 Generic Object Oriented Substation Event (GOOSE) has been applied as the message carrier. The IEC GOOSE [18] is a multi-cast message originally designed to carry binary state information among multiple relays connected to the same Ethernet network inside a substation. As a multi-cast message, it can be sent to many other devices through an Ethernet switch and/or bridgerouter. One desirable new feature of the IEC GOOSE is the ability to directly send analog data values. In contrast to the limited binary status information, the IEC GOOSE carries a "userdefined" dataset, which can be configured with any "visible" data object in the relay such as Volts, Watts, Vars, breaker status, etc. The data items in the database carry the same "type" as the original data item. In the application of transmitting power flows, data, in engineering units, can be easily transferred among all locations as needed. These data are provided at much faster sampling rates than traditionally offered by

C. Ad-hoc and Plug-and-play Sensor Network for Maintenance

Asset management will be far more important in the age of the smarter grid, since many assets are aging. As intelligent sensors and a communications network for collecting health check signals will be technically available in the near future, we should minimize the number of important assets rendered out-of-service due to the attachment and detachment of sensors as well as the maintenance work for the sensor systems themselves. Our concept is the use of an ad-hoc and plug-and-play sensor network for maintenance to avoid or reduce maintenance works required to maintain ICT infrastructure such as battery replacement, cabling, and database setting. In the proposed architecture and process, asset states are initially collected and diagnosed by ordinary rounds, inspections or a primitive sensor system. When a failure symptom is detected, elaborate sensor

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA)
 ISSN: 2248-9622
 www.ijera.com
 Vol. 2, Issue 6, November- December 2012, pp.553-584

systems will be attached without stopping the assets, whereupon their states will be carefully monitored and diagnosed. If parts are found to have failed or deteriorated, and subsequently been maintained or replaced, the sensor systems are fully detached, which helps reduce the maintenance of the sensor systems in the long run. Key technologies include the construction method of field sensor networks (ad-hoc and multi-hop wired/wireless communications and sensors) for collecting field information and the plug-and-play scheme for automated data processing when a sensor is attached or detached as

We consider the following anycast field equations defined over an open bounded piece of network and /or feature space $\Omega \subset R^{d}$. They describe the dynamics of the mean anycast of each of p node populations.

$$
\left\{\begin{array}{c}
\left(\frac{d}{d t}+l_{i}\right) V_{i}(t, r)=\sum_{j=1}^{p} \int_{\Omega} J_{i j}(r, \bar{r}) S\left[\left(V_{j}\left(t-\tau_{i j}(r, \bar{r}), \bar{r}\right)-h_{\mid j}\right)\right] d \bar{r} \tag{1}\\
+I_{i}^{e t t}(r, t), \\
V_{i}(t, r)=\phi_{i}(t, r) \\
t \geq 0,1 \leq i \leq p,
\end{array}\right.
$$

We give an interpretation of the various parameters and functions that appear in (1), Ω is finite piece of nodes and/or feature space and is represented as an open bounded set of R^{d}. The vector r and \bar{r} represent points in Ω. The function $S: R \rightarrow(0,1)$ is the normalized sigmoid function:

$$
\begin{equation*}
S(z)=\frac{1}{1+e^{-z}} \tag{2}
\end{equation*}
$$

It describes the relation between the input rate v_{i} of population i as a function of the packets potential, for example, $V_{i}=v_{i}=S\left[\sigma_{i}\left(V_{i}-h_{i}\right)\right]$. We note V the p-dimensional vector $\left(V_{1}, \ldots, V_{p}\right)$. The p function $\phi_{i}, i=1, \ldots, p$, represent the initial conditions, see below. We note ϕ the $p-$ dimensional vector $\left(\phi_{1}, \ldots, \phi_{p}\right)$. The p function $I_{i}^{\text {ext }}, i=1, \ldots, p$, represent external factors from other network areas. We note $I^{\text {ext }}$ the $p-$ dimensional vector $\left(I_{1}^{e x t}, \ldots, I_{p}^{e x t}\right)$. The $p \times p$ matrix of functions $J=\left\{J_{i j}\right\}_{i, j=1, \ldots, p}$ represents the connectivity between populations i and j, see below. The p real values $h_{i}, i=1, \ldots, p$, determine the threshold of activity for each population, that is, the value of the nodes potential corresponding to 50% of the maximal activity. The
p real positive values $\sigma_{i}, i=1, \ldots, p$, determine the slopes of the sigmoids at the origin. Finally the p real positive values $l_{i}, i=1, \ldots, p$, determine the speed at which each anycast node potential decreases exponentially toward its real value. We also introduce the function $S: R^{p} \rightarrow R^{p}$, defined by $\left.\quad S(x)=\left[S\left(\sigma_{1}\left(x_{1}-h_{1}\right)\right), \ldots, S\left(\sigma_{p}-h_{p}\right)\right)\right]$, and the diagonal $p \times p$ matrix $L_{0}=\operatorname{diag}\left(l_{1}, \ldots, l_{p}\right)$. Is the intrinsic dynamics of the population given by the linear response of data transfer. $\left(\frac{d}{d t}+l_{i}\right)$ is replaced by $\left(\frac{d}{d t}+l_{i}\right)^{2}$ to use the alpha function response. We use $\left(\frac{d}{d t}+l_{i}\right)$ for simplicity although our analysis applies to more general intrinsic dynamics. For the sake, of generality, the propagation delays are not assumed to be identical for all populations, hence they are described by a matrix $\tau(r, \bar{r})$ whose element $\tau_{i j}(r, \bar{r})$ is the propagation delay between population j at \bar{r} and population i at r. The reason for this assumption is that it is still unclear from anycast if propagation delays are independent of the populations. We assume for technical reasons that τ is continuous, that is $\tau \in C^{0}\left(\bar{\Omega}^{2}, R_{+}^{p \times p}\right)$. Moreover packet data indicate that τ is not a symmetric function i.e., $\tau_{i j}(r, \bar{r}) \neq \tau_{i j}(\bar{r}, r)$, thus no assumption is made about this symmetry unless otherwise stated. In order to compute the righthand side of (1), we need to know the node potential factor V on interval $[-T, 0]$. The value of T is obtained by considering the maximal delay:

$$
\begin{equation*}
\tau_{m}=\max _{i, j(r, r \in \bar{\Omega} \times \bar{\Omega})} \tau_{i, j}(r, \bar{r}) \tag{3}
\end{equation*}
$$

Hence we choose $T=\tau_{m}$

A. Mathematical Framework

A convenient functional setting for the non-delayed packet field equations is to use the space $F=L^{2}\left(\Omega, R^{p}\right)$ which is a Hilbert space endowed with the usual inner product:

$$
\begin{equation*}
\langle V, U\rangle_{F}=\sum_{i=1}^{p} \int_{\Omega} V_{i}(r) U_{i}(r) d r \tag{1}
\end{equation*}
$$

To give a meaning to (1), we defined the history space $\quad C=C^{0}\left(\left[-\tau_{m}, 0\right], F\right) \quad$ with $\|\phi\|=\sup _{t \in\left[-\tau_{m}, 0\right]}\|\phi(t)\| F$, which is the Banach phase space associated with equation (3). Using the
(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.553-584
notation $V_{t}(\theta)=V(t+\theta), \theta \in\left[-\tau_{m}, 0\right]$, we write (1) as

$$
\left\{\begin{array}{c}
V(t)=-L_{0} V(t)+L_{1} S\left(V_{t}\right)+I^{e x t}(t) \tag{2}\\
V_{0}=\phi \in C
\end{array}\right.
$$

Where

$$
\left\{\begin{array}{c}
L_{1}: C \rightarrow F \\
\phi \rightarrow \int_{\Omega} J(., \bar{r}) \phi(\bar{r},-\tau(., \bar{r})) d \bar{r}
\end{array}\right.
$$

Is the linear continuous operator satisfying $\left\|L_{1}\right\| \leq\|J\|_{L^{2}\left(\Omega^{2}, R^{p \times p}\right)}$. Notice that most of the papers on this subject assume Ω infinite, hence requiring $\tau_{m}=\infty$.

Proposition 1.0 If the following assumptions are satisfied.

1. $J \in L^{2}\left(\Omega^{2}, R^{p \times p}\right)$,
2. The external current $I^{\text {ext }} \in C^{0}(R, F)$,
3. $\tau \in C^{0}\left(\overline{\Omega^{2}}, R_{+}^{p \times p}\right), \sup _{\overline{\Omega^{2}}} \tau \leq \tau_{m}$.

Then for any $\phi \in C$, there exists a unique solution $V \in C^{1}([0, \infty), F) \cap C^{0}\left(\left[-\tau_{m}, \infty, F\right)\right.$ to (3)
Notice that this result gives existence on R_{+}, finitetime explosion is impossible for this delayed differential equation. Nevertheless, a particular solution could grow indefinitely, we now prove that this cannot happen.
B. Boundedness of Solutions

A valid model of neural networks should only feature bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately bounded by the same constant R if $I \equiv \max _{t \in R^{+}}\left\|I^{e x t}(t)\right\|_{F}<\infty$.
Proof :Let us defined $f: R \times C \rightarrow R^{+}$as
$f\left(t, V_{t}\right)=\left\langle-L_{0} V_{t}(0)+L_{1} S\left(V_{t}\right)+I^{\text {ext }}(t), V(t)\right\rangle_{F}=\frac{1}{2} \frac{d\|V\|_{F}^{2}}{d t}$
We note $l=\min _{i=1, \ldots p} l_{i}$

$$
f\left(t, V_{t}\right) \leq-l\|V(t)\|_{F}^{2}+\left(\sqrt{p|\Omega|}\|J\|_{F}+I\right)\|V(t)\|_{F}
$$

Thus, if

Proposition 1.1 : Let S and t be measured simple functions on X. for $E \mathcal{E} M$, define
$\phi(E)=\int_{E} s d \mu$
$\|V(t)\|_{F} \geq 2 \frac{\sqrt{p|\Omega|} \cdot\|J\|_{F}+I}{l}=R, f\left(t, V_{t}\right) \leq-\frac{l R^{2}}{2}=-\delta<0$

Let us show that the open route of F of center 0 and radius R, B_{R}, is stable under the dynamics of equation. We know that $V(t)$ is defined for all $t \geq 0 s$ and that $f<0$ on ∂B_{R}, the boundary of B_{R}. We consider three cases for the initial condition V_{0} If $\quad\left\|V_{0}\right\|_{C}<R \quad$ and set $T=\sup \left\{t \mid \forall s \in[0, t], V(s) \in \overline{B_{R}}\right\}$. Suppose that $T \in R$, then $V(T)$ is defined and belongs to $\overline{B_{R}}$, the closure of B_{R}, because $\overline{B_{R}}$ is closed, in effect to ∂B_{R}, we also have $\left.\frac{d}{d t}\|V\|_{F}^{2}\right|_{t=T}=f\left(T, V_{T}\right) \leq-\delta<0 \quad$ because $V(T) \in \partial B_{R}$. Thus we deduce that for $\mathcal{E}>0$ and small enough, $V(T+\varepsilon) \in \overline{B_{R}}$ which contradicts the definition of T. Thus $T \notin R$ and $\overline{B_{R}}$ is stable. Because $\mathrm{f}<0$ on $\partial B_{R}, V(0) \in \partial B_{R}$ implies that $\forall t>0, V(t) \in B_{R}$. Finally we consider the case $V(0) \in C \overline{B_{R}} \quad$ Suppose that $\forall t>0, V(t) \notin \overline{B_{R}}$, then
$\forall t>0, \frac{d}{d t}\|V\|_{F}^{2} \leq-2 \delta, \quad$ thus $\quad\|V(t)\|_{F} \quad$ is monotonically decreasing and reaches the value of R in finite time when $V(t)$ reaches ∂B_{R}. This contradicts our assumption. Thus $\exists T>0 \mid V(T) \in B_{R}$.

Then ϕ is a measure on M.
$\int_{X}(s+t) d \mu=\int_{X} s d \mu+\int_{X} t d \mu$
Proof : If s and if E_{1}, E_{2}, \ldots are disjoint members of M whose union is E, the countable additivity of μ shows that

Vol. 2, Issue 6, November- December 2012, pp.553-584

$$
\begin{aligned}
\phi(E) & =\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i} \cap E\right)=\sum_{i=1}^{n} \alpha_{i} \sum_{r=1}^{\infty} \mu\left(A_{i} \cap E_{r}\right) \\
& =\sum_{r=1}^{\infty} \sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i} \cap E_{r}\right)=\sum_{r=1}^{\infty} \phi\left(E_{r}\right)
\end{aligned}
$$

Also, $\varphi(\phi)=0$, so that φ is not identically ∞.
Next, let s be as before, let $\beta_{1}, \ldots, \beta_{m}$ be the distinct values of t , and let $B_{j}=\left\{x: t(x)=\beta_{j}\right\}$ If $E_{i j}=A_{i} \cap B_{j}$, the
$\int_{E_{i j}}(s+t) d \mu=\left(\alpha_{i}+\beta_{j}\right) \mu\left(E_{i j}\right)$
and $\int_{E_{i j}} s d \mu+\int_{E_{i j}} t d \mu=\alpha_{i} \mu\left(E_{i j}\right)+\beta_{j} \mu\left(E_{i j}\right)$ Thus (2) holds with $E_{i j}$ in place of X. Since X is the disjoint union of the sets $E_{i j}(1 \leq i \leq n, 1 \leq j \leq m)$, the first half of our proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane whose complement is connected, if f is a continuous complex function on K which is holomorphic in the interior of, and if $\varepsilon>0$, then there exists a polynomial P such that $|f(z)=P(z)|<\varepsilon$ for all $z \varepsilon K$. If the interior of K is empty, then part of the hypothesis is vacuously satisfied, and the conclusion holds for every $f \varepsilon C(K)$. Note that K need to be connected.
Proof: By Tietze's theorem, f can be extended to a continuous function in the plane, with compact support. We fix one such extension and denote it again by f. For any $\delta>0$, let $\omega(\delta)$ be the supremum of the numbers $\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right|$ Where z_{1} and z_{2} are subject to the condition $\left|z_{2}-z_{1}\right| \leq \delta$. Since f is uniformly continous, we have $\lim _{\delta \rightarrow 0} \omega(\delta)=0$
(1) From now on, δ will be fixed. We shall prove that there is a polynomial P such that

$$
\begin{equation*}
|f(z)-P(z)|<10,000 \omega(\delta) \quad(z \varepsilon K) \tag{2}
\end{equation*}
$$

By (1), this proves the theorem. Our first objective is the construction of a function $\Phi \varepsilon C_{c}^{\prime}\left(R^{2}\right)$, such that for all z

$$
\begin{align*}
& |f(z)-\Phi(z)| \leq \omega(\delta) \tag{3}\\
& |(\partial \Phi)(z)|<\frac{2 \omega(\delta)}{\delta} \tag{4}
\end{align*}
$$

And

$$
\begin{equation*}
\Phi(z)=-\frac{1}{\pi} \iint_{X} \frac{(\partial \Phi)(\zeta)}{\zeta-z} d \zeta d \eta \quad(\zeta=\xi+i \eta) \tag{5}
\end{equation*}
$$

Where X is the set of all points in the support of Φ whose distance from the complement of K does not δ. (Thus X contains no point which is "far within" K.) We construct Φ as the convolution of f with a smoothing function A. Put $a(r)=0$ if $r>\delta$, put
$a(r)=\frac{3}{\pi \delta^{2}}\left(1-\frac{r^{2}}{\delta^{2}}\right)^{2} \quad(0 \leq r \leq \delta)$,
And define
$A(z)=a(|z|)$
For all complex z. It is clear that $A \varepsilon C_{c}^{\prime}\left(R^{2}\right)$. We claim that

$$
\begin{align*}
& \iint_{R^{s}} A=1 \tag{8}\\
& \iint_{R^{2}} \partial A=0 \tag{9}\\
& \iint_{R^{3}}|\partial A|=\frac{24}{15 \delta}<\frac{2}{\delta},
\end{align*}
$$

The constants are so adjusted in (6) that (8) holds. (Compute the integral in polar coordinates), (9) holds simply because A has compact support. To compute (10), express ∂A in polar coordinates, and note that $\partial A / \partial \theta=0$,

$$
\begin{equation*}
\partial A / \partial r=-a \tag{11}
\end{equation*}
$$

Now define
$\Phi(z)=\iint_{R^{2}} f(z-\zeta) A d \xi d \eta=\iint_{R^{2}} A(z-\zeta) f(\zeta) d \xi d \eta$
Since f and A have compact support, so does Φ. Since

$$
\begin{align*}
& \Phi(z)-f(z) \\
& =\iint_{R^{2}}[f(z-\zeta)-f(z)] A(\xi) d \xi d \eta \tag{12}
\end{align*}
$$

And $A(\zeta)=0$ if $|\zeta|>\delta$, (3) follows from (8).
The difference quotients of A converge boundedly to the corresponding partial derivatives, since
$A \varepsilon C_{c}^{\prime}\left(R^{2}\right)$. Hence the last expression in (11) may be differentiated under the integral sign, and we obtain

$$
\begin{align*}
(\partial \Phi)(z) & =\iint_{R^{2}}(\overline{\partial A})(z-\zeta) f(\zeta) d \xi d \eta \\
& =\iint_{R^{2}} f(z-\zeta)(\partial A)(\zeta) d \xi d \eta \\
& =\iint_{R^{2}}[f(z-\zeta)-f(z)](\partial A)(\zeta) d \xi d \eta \tag{13}
\end{align*}
$$

The last equality depends on (9). Now (10) and (13) give (4). If we write (13) with Φ_{x} and Φ_{y} in place of $\partial \Phi$, we see that Φ has continuous partial derivatives, if we can show that $\partial \Phi=0$ in G, where G is the set of all $z \varepsilon K$ whose distance from the complement of K exceeds δ. We shall do this by showing that

$$
\begin{equation*}
\Phi(z)=f(z) \quad(z \varepsilon G) \tag{14}
\end{equation*}
$$

Note that $\partial f=0$ in G, since f is holomorphic there. Now if $z \varepsilon G$, then $z-\zeta$ is in the interior of K for all ζ with $|\zeta|<\delta$. The mean value property for harmonic functions therefore gives, by the first equation in (11),

$$
\begin{align*}
\Phi(z) & =\int_{0}^{\delta} a(r) r d r \int_{0}^{2 \pi} f\left(z-r e^{i \theta}\right) d \theta \\
& =2 \pi f(z) \int_{0}^{\delta} a(r) r d r=f(z) \iint_{R^{2}} A=f(z) \tag{15}
\end{align*}
$$

For all $z \varepsilon G$, we have now proved (3), (4), and (5) The definition of X shows that X is compact and that X can be covered by finitely many open discs D_{1}, \ldots, D_{n}, of radius 2δ, whose centers are not in K. Since $S^{2}-K$ is connected, the center of each D_{j} can be joined to ∞ by a polygonal path in $S^{2}-K$. It follows that each D_{j} contains a compact connected set E_{j}, of diameter at least 2δ, so that $S^{2}-E_{j}$ is connected and so that $K \cap E_{j}=\phi$. with $r=2 \delta$. There are functions $g_{j} \varepsilon H\left(S^{2}-E_{j}\right)$ and constants b_{j} so that the inequalities.

$$
\begin{align*}
& \left|Q_{j}(\zeta, z)\right|<\frac{50}{\delta} \\
& \left|Q_{j}(\zeta, z)-\frac{1}{z-\zeta}\right|<\frac{4,000 \delta^{2}}{|z-\zeta|^{2}} \tag{17}
\end{align*}
$$

$Q_{j}(\zeta, z)=g_{j}(z)+\left(\zeta-b_{j}\right) g_{j}^{2}(z)$
Let Ω be the complement of $E_{1} \cup \ldots \cup E_{n}$. Then
Ω is an open set which contains K. Put
$X_{1}=X \cap D_{1}$ and
$X_{j}=\left(X \cap D_{j}\right)-\left(X_{1} \cup \ldots \cup X_{j-1}\right)$, for $2 \leq j \leq n$,
Define

$$
\begin{equation*}
R(\zeta, z)=Q_{j}(\zeta, z) \quad\left(\zeta \varepsilon X_{j}, z \varepsilon \Omega\right) \tag{19}
\end{equation*}
$$

And
$F(z)=\frac{1}{\pi} \iint_{X}(\partial \Phi)(\zeta) R(\zeta, z) d \zeta d \eta$

$$
\begin{equation*}
(z \varepsilon \Omega) \tag{20}
\end{equation*}
$$

Since,
$F(z)=\sum_{j=1} \frac{1}{\pi} \iint_{X_{i}}(\partial \Phi)(\zeta) Q_{j}(\zeta, z) d \xi d \eta$,
(18) shows that F is a finite linear combination of the functions g_{j} and g_{j}^{2}. Hence $F \varepsilon H(\Omega)$. By (20), (4), and (5) we have
$\left.|F(z)-\Phi(z)|<\frac{2 \omega(\delta)}{\pi \delta} \iint_{X} \right\rvert\, R(\zeta, z)$
$\left.-\frac{1}{z-\zeta} \right\rvert\, d \xi d \eta \quad(z \varepsilon \Omega)$
Observe that the inequalities (16) and (17) are valid with R in place of Q_{j} if $\zeta \varepsilon X$ and $z \varepsilon \Omega$. Now fix $z \varepsilon \Omega$., put $\zeta=z+\rho e^{i \theta}$, and estimate the integrand in (22) by (16) if $\rho<4 \delta$, by (17) if $4 \delta \leq \rho$. The integral in (22) is then seen to be less than the sum of
$2 \pi \int_{0}^{4 \delta}\left(\frac{50}{\delta}+\frac{1}{\rho}\right) \rho d \rho=808 \pi \delta$
And
$2 \pi \int_{4 \delta}^{\infty} \frac{4,000 \delta^{2}}{\rho^{2}} \rho d \rho=2,000 \pi \delta$.
Hence (22) yields

$$
\begin{equation*}
|F(z)-\Phi(z)|<6,000 \omega(\delta) \quad(z \varepsilon \Omega) \tag{25}
\end{equation*}
$$

Since $F \varepsilon H(\Omega), K \subset \Omega$, and $S^{2}-K$ is connected, Runge's theorem shows that F can be uniformly approximated on K by polynomials. Hence (3) and (25) show that (2) can be satisfied. This completes the proof.

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA)
 ISSN: 2248-9622
 www.ijera.com
 Vol. 2, Issue 6, November- December 2012, pp.553-584

Lemma 1.0 : Suppose $f \varepsilon C_{c}^{\prime}\left(R^{2}\right)$, the space of all continuously differentiable functions in the plane, with compact support. Put
$\partial=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$
Then the following "Cauchy formula" holds:
$f(z)=-\frac{1}{\pi} \iint_{R^{2}} \frac{(\partial f)(\zeta)}{\zeta-z} d \xi d \eta$

$$
\begin{equation*}
(\zeta=\xi+i \eta) \tag{2}
\end{equation*}
$$

Proof: This may be deduced from Green's theorem. However, here is a simple direct proof:
Put $\varphi(r, \theta)=f\left(z+r e^{i \theta}\right), r>0, \theta$ real

$$
\begin{equation*}
\text { If } \zeta=z+r e^{i \theta}, \text { the chain rule gives } \tag{3}
\end{equation*}
$$

$(\partial f)(\zeta)=\frac{1}{2} e^{i \theta}\left[\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \theta}\right] \varphi(r, \theta)$
The right side of (2) is therefore equal to the limit, as $\varepsilon \rightarrow 0$, of

$$
\begin{equation*}
-\frac{1}{2} \int_{\varepsilon}^{\infty} \int_{0}^{2 \pi}\left(\frac{\partial \varphi}{\partial r}+\frac{i}{r} \frac{\partial \varphi}{\partial \theta}\right) d \theta d r \tag{4}
\end{equation*}
$$

For each $r>0, \varphi$ is periodic in θ, with period 2π. The integral of $\partial \varphi / \partial \theta$ is therefore 0 , and (4) becomes
$-\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \int_{\varepsilon}^{\infty} \frac{\partial \varphi}{\partial r} d r=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(\varepsilon, \theta) d \theta$
As $\varepsilon \rightarrow 0, \varphi(\varepsilon, \theta) \rightarrow f(z)$ uniformly. This gives (2)

If $\quad X^{\alpha} \in a \quad$ and $\quad X^{\beta} \in k\left[X_{1}, \ldots X_{n}\right]$, then $X^{\alpha} X^{\beta}=X^{\alpha+\beta} \in a$, and so A satisfies the condition ($*$). Conversely,

$$
\left(\sum_{\alpha \in A} c_{\alpha} X^{\alpha}\right)\left(\sum_{\beta \in \square^{n}} d_{\beta} X^{\beta}\right)=\sum_{\alpha, \beta} c_{\alpha} d_{\beta} X^{\alpha+\beta}
$$

(finite sums)
and so if A satisfies (*), then the subspace generated by the monomials $X^{\alpha}, \alpha \in a$, is an ideal. The proposition gives a classification of the monomial ideals in $k\left[X_{1}, \ldots X_{n}\right]$: they are in one to one correspondence with the subsets A of \square^{n} satisfying $(*)$. For example, the monomial ideals in $k[X]$ are exactly the ideals $\left(X^{n}\right), n \geq 1$, and the zero ideal (corresponding to the empty set A). We
write $\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ for the ideal corresponding to A (subspace generated by the $\left.X^{\alpha}, \alpha \in a\right)$.

LEMMA 1.1. Let S be a subset of \square^{n}. The the ideal a generated by $X^{\alpha}, \alpha \in S$ is the monomial ideal corresponding to
$A \stackrel{\text { df }}{=}\left\{\beta \in \square^{n} \mid \beta-\alpha \in \square^{n}, \quad\right.$ some $\left.\alpha \in S\right\}$
Thus, a monomial is in a if and only if it is divisible by one of the $X^{\alpha}, \alpha \in \mid S$
PROOF. Clearly A satisfies $(*)$, and $a \subset\left\langle X^{\beta} \mid \beta \in A\right\rangle$. Conversely, if $\beta \in A$, then $\beta-\alpha \in \square^{n} \quad$ for \quad some $\quad \alpha \in S \quad, \quad$ and $X^{\beta}=X^{\alpha} X^{\beta-\alpha} \in a$. The last statement follows from the fact that $X^{\alpha} \mid X^{\beta} \Leftrightarrow \beta-\alpha \in \square^{n}$. Let $A \subset \square^{n}$ satisfy $(*)$. From the geometry of A, it is clear that there is a finite set of elements $S=\left\{\alpha_{1}, \ldots \alpha_{s}\right\} \quad$ of A such that $A=\left\{\beta \in \square^{n} \mid \beta-\alpha_{i} \in \square^{2}\right.$, some $\left.\alpha_{i} \in S\right\}$
(The $\alpha_{i}{ }^{\prime} s$ are the corners of A) Moreover, $a=\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ is generated by the monomials $X^{\alpha_{i}}, \alpha_{i} \in S$.
(5)

DEFINITION 1.0. For a nonzero ideal a in $k\left[X_{1}, \ldots, X_{n}\right]$, we let $(L T(a))$ be the ideal generated by
$\{L T(f) \mid f \in a\}$
LEMMA 1.2 Let a be a nonzero ideal in $k\left[X_{1}, \ldots, X_{n}\right]$; then $(L T(a))$ is a monomial jdeal, and it equals $\left(L T\left(g_{1}\right), \ldots, L T\left(g_{n}\right)\right)$ for some $g_{1}, \ldots, g_{n} \in a$.
PROOF. Since $(L T(a))$ can also be described as the ideal generated by the leading monomials (rather than the leading terms) of elements of a.

THEOREM 1.2. Every ideal a in $k\left[X_{1}, \ldots, X_{n}\right]$ is finitely generated; more precisely, $a=\left(g_{1}, \ldots, g_{s}\right)$ where g_{1}, \ldots, g_{s} are any elements of a whose leading terms generate $L T(a)$

Akash K Singh / International Journal of Engineering Research and Applications
(IJERA)
ISSN: 2248-9622
www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.553-584
PROOF. Let $f \in a$. On applying the division be finitely generated. Let g_{1}, \ldots, g_{m} be elements of algorithm, we find $f=a_{1} g_{1}+\ldots+a_{s} g_{s}+r, \quad a_{i}, r \in k\left[X_{1}, \ldots, X_{n}\right]$
, where either $r=0$ or no monomial occurring in it
is divisible by any $L T\left(g_{i}\right)$. But $r=f-\sum a_{i} g_{i} \in a \quad, \quad$ and \quad therefore $L T(r) \in L T(a)=\left(L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right)$
implies that every monomial occurring in r is divisible by one in $L T\left(g_{i}\right)$. Thus $r=0$, and $g \in\left(g_{1}, \ldots, g_{s}\right)$.

DEFINITION 1.1. A finite subset

 $S=\left\{g_{1}, \ldots, g_{s}\right\}$ of an ideal a is a standard ((Gröbner) bases for a if $\left(L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right)=L T(a)$. In other words, S is a standard basis if the leading term of every element of a is divisible by at least one of the leading terms of the g_{i}.THEOREM 1.3 The ring $k\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian i.e., every ideal is finitely generated.

PROOF. For $n=1, k[X]$ is a principal ideal domain, which means that every ideal is generated by single element. We shall prove the theorem by induction on n. Note that the obvious map $k\left[X_{1}, \ldots X_{n-1}\right]\left[X_{n}\right] \rightarrow k\left[X_{1}, \ldots X_{n}\right] \quad$ is an isomorphism - this simply says that every polynomial f in n variables $X_{1}, \ldots X_{n}$ can be expressed uniquely as a polynomial in X_{n} with coefficients in $k\left[X_{1}, \ldots, X_{n}\right]$:
$f\left(X_{1}, \ldots X_{n}\right)=a_{0}\left(X_{1}, \ldots X_{n-1}\right) X_{n}^{r}+\ldots+a_{r}\left(X_{1}, \ldots X_{n-1}\right)$
Thus the next lemma will complete the proof
LEMMA 1.3. If A is Noetherian, then so also is $A[X]$
PROOF. For a polynomial

$$
f(X)=a_{0} X^{r}+a_{1} X^{r-1}+\ldots+a_{r}, \quad a_{i} \in A, \quad a_{0} \neq 0
$$

r is called the degree of f, and a_{0} is its leading coefficient. We call 0 the leading coefficient of the polynomial 0 . Let a be an ideal in $A[X]$. The leading coefficients of the polynomials in a form an ideal a^{\prime} in A, and since A is Noetherian, a^{\prime} will
a whose leading coefficients generate a, and let r be the maximum degree of g_{i}. Now let $f \in a$, and suppose f has degree $s>r$, say, $f=a X^{s}+\ldots$ Then $a \in a^{\prime}$, and so we can write $a=\sum b_{i} a_{i}, \quad b_{i} \in A$,
$a_{i}=$ leading coefficient of g_{i}
Now
$f-\sum b_{i} g_{i} X^{s-r_{i}}, \quad r_{i}=\operatorname{deg}\left(g_{i}\right)$, has degree $<\operatorname{deg}(f)$. By continuing in this way, we find that $f \equiv f_{t} \quad \bmod \left(g_{1}, \ldots g_{m}\right) \quad$ With $\quad f_{t} \quad$ a polynomial of degree $t<r$. For each $d<r$, let a_{d} be the subset of A consisting of 0 and the leading coefficients of all polynomials in a of degree d; it is again an ideal in A. Let $g_{d, 1}, \ldots, g_{d, m_{d}}$ be polynomials of degree d whose leading coefficients generate a_{d}. Then the same argument as above shows that any polynomial f_{d} in a of degree d can be written $f_{d} \equiv f_{d-1} \quad \bmod \left(g_{d, 1}, \ldots g_{d, m_{d}}\right) \quad$ With $\quad f_{d-1}$ of degree $\leq d-1$. On applying this remark repeatedly we find that $f_{t} \in\left(g_{r-1,1}, \ldots g_{r-1, m_{r-1}}, \ldots g_{0,1}, \ldots g_{0, m_{0}}\right)$ Hence
$f_{t} \in\left(g_{1}, \ldots g_{m} g_{r-1,1}, \ldots g_{r-1, m_{r-1}}, \ldots, g_{0,1}, \ldots, g_{0, m_{0}}\right)$
and so the polynomials $g_{1}, \ldots, g_{0, m_{0}}$ generate a
One of the great successes of category theory in computer science has been the development of a "unified theory" of the constructions underlying denotational semantics. In the untyped λ-calculus, any term may appear in the function position of an application. This means that a model D of the λ calculus must have the property that given a term t whose interpretation is $d \in D$, Also, the interpretation of a functional abstraction like $\lambda x . x$ is most conveniently defined as a function from Dto D, which must then be regarded as an element of D. Let $\psi:[D \rightarrow D] \rightarrow D$ be the function that picks out elements of D to represent elements of $[D \rightarrow D]$ and $\phi: D \rightarrow[D \rightarrow D]$ be the function that maps elements of D to functions of D. Since $\psi(f)$ is intended to represent the

Vol. 2, Issue 6, November- December 2012, pp.553-584
function f as an element of D, it makes sense to require that $\phi(\psi(f))=f$, that is, $\psi o \psi=i d_{[D \rightarrow D]} \quad$ Furthermore, we often want to view every element of D as representing some function from D to D and require that elements representing the same function be equal - that is
$\psi(\varphi(d))=d$
or
$\psi o \phi=i d_{D}$
The latter condition is called extensionality. These conditions together imply that ϕ and ψ are inverses--- that is, D is isomorphic to the space of functions from D to D that can be the interpretations of functional abstractions: $D \cong[D \rightarrow D]$.Let us suppose we are working with the untyped λ-calculus, we need a solution ot the equation $D \cong A+[D \rightarrow D]$, where A is some predetermined domain containing interpretations for elements of C. Each element of D corresponds to either an element of A or an element of $[D \rightarrow D]$, with a tag. This equation can be solved by finding least fixed points of the function $F(X)=A+[X \rightarrow X]$ from domains to domains --- that is, finding domains X such that $X \cong A+[X \rightarrow X]$, and such that for any domain Y also satisfying this equation, there is an embedding of X to Y--- a pair of maps

Such that
$f^{R} o f=i d_{X}$
$f o f^{R} \subseteq i d_{Y}$
Where $f \subseteq g$ means that f approximates g in some ordering representing their information content. The key shift of perspective from the domain-theoretic to the more general categorytheoretic approach lies in considering F not as a function on domains, but as a functor on a category of domains. Instead of a least fixed point of the function, F.

Definition 1.3: Let K be a category and $F: K \rightarrow K$ as a functor. A fixed point of F is a pair (A,a), where A is a K-object and $a: F(A) \rightarrow A$ is an isomorphism. A prefixed point of F is a pair (A,a), where A is a \boldsymbol{K}-object and a is any arrow from $F(A)$ to A

Definition 1.4: An ω-chain in a category \boldsymbol{K} is a diagram of the following form:

$$
\Delta=D_{o} \xrightarrow{f_{o}} D_{1} \xrightarrow{f_{1}} D_{2} \xrightarrow{f_{2}} \cdots \cdots
$$

Recall that a cocone μ of an $\omega-$ chain Δ is a K object X and a collection of K -arrows $\left\{\mu_{i}: D_{i} \rightarrow X \mid i \geq 0\right\}$ such that $\mu_{i}=\mu_{i+1} o f_{i}$ for all $i \geq 0$. We sometimes write $\mu: \Delta \rightarrow X$ as a reminder of the arrangement of $\mu^{\prime} s$ components Similarly, a colimit $\mu: \Delta \rightarrow X$ is a cocone with the property that if $v: \Delta \rightarrow X^{\prime}$ is also a cocone then there exists a unique mediating arrow $k: X \rightarrow X^{\prime}$ such that for all $i \geq 0, v_{i}=k o \mu_{i}$. Colimits of ω-chains are sometimes referred to as $\omega-$ colimits . Dually, an $\omega^{o p}$ - chain in \boldsymbol{K} is a diagram of the following form:
$\Delta=D_{o} \stackrel{f_{o}}{\leftarrow} D_{1} \stackrel{f_{1}}{\longleftarrow} D_{2} \stackrel{f_{2}}{\leftarrow} \cdots$
A cone
$\mu: X \rightarrow \Delta$ of an $\omega^{o p}-$ chain Δ is a K-object X and a collection of \mathbf{K}-arrows $\left\{\mu_{i}: D_{i} \mid i \geq 0\right\}$ such that for all $i \geq 0, \mu_{i}=f_{i} o \mu_{i+1}$. An $\omega^{o p}$-limit of an $\omega^{o p}$-chain Δ is a cone $\mu: X \rightarrow \Delta$ with the property that if $v: X^{\prime} \rightarrow \Delta$ is also a cone, then there exists a unique mediating arrow $k: X^{\prime} \rightarrow X$ such that for all $i \geq 0, \mu_{i} o k=v_{i}$. We write \perp_{k} (or just \perp) for the distinguish initial object of \boldsymbol{K}, when it has one, and $\perp \rightarrow A$ for the unique arrow from \perp to each \boldsymbol{K}-object A. It is also convenient to write $\Delta^{-}=D_{1} \xrightarrow{f_{1}} D_{2} \xrightarrow{f_{2}} \cdots$. to denote all of Δ except D_{o} and f_{0}. By analogy, μ^{-}is $\left\{\mu_{i} \mid i \geq 1\right\}$. For the images of Δ and μ under \boldsymbol{F} we write $F(\Delta)=F\left(D_{o}\right) \xrightarrow{F\left(f_{o}\right)} F\left(D_{1}\right) \longrightarrow^{F\left(f_{1}\right)} F\left(D_{2}\right) \xrightarrow{F\left(f_{2}\right)} \cdots \cdot$
and $F(\mu)=\left\{F\left(\mu_{i}\right) \mid i \geq 0\right\}$
We write F^{i} for the \boldsymbol{i}-fold iterated composition of \boldsymbol{F} that
is,
$F^{o}(f)=f, F^{1}(f)=F(f), F^{2}(f)=F(F(f))$,etc. With these definitions we can state that every monitonic function on a complete lattice has a least fixed point:

Lemma 1.4. Let K be a category with initial object \perp and let $F: K \rightarrow K$ be a functor. Define the $\omega-$ chain Δ by
$\Delta=\perp \xrightarrow{\perp \rightarrow F(\perp)} F(\perp) \xrightarrow{F(\perp \perp \rightarrow F(\perp))} F^{2}(\perp) \xrightarrow{F^{2}(\perp \rightarrow F(\perp))} \rightarrow \cdots \ldots \ldots$
If both $\mu: \Delta \rightarrow D$ and $F(\mu): F(\Delta) \rightarrow F(D)$ are colimits, then (D, d) is an intial F -algebra, where $d: F(D) \rightarrow D \quad$ is the mediating arrow from $F(\mu)$ to the cocone μ^{-}

Theorem 1.4 Let a DAG G given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified. Then the product of these conditional distributions yields a joint probability distribution P of the variables, and (G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let $X_{1}, X_{2}, \ldots \ldots . X_{n}$ be the resultant ordering. Next define.
$P\left(x_{1}, x_{2}, \ldots x_{n}\right)=P\left(x_{n} \mid p a_{n}\right) P\left(x_{n-1} \mid P a_{n-1}\right) \ldots$
.. $P\left(x_{2} \mid p a_{2}\right) P\left(x_{1} \mid p a_{1}\right)$,
Where $P A_{i}$ is the set of parents of X_{i} of in G and $P\left(x_{i} \mid p a_{i}\right)$ is the specified conditional probability distribution. First we show this does indeed yield a joint probability distribution. Clearly, $0 \leq P\left(x_{1}, x_{2}, \ldots x_{n}\right) \leq 1$ for all values of the variables. Therefore, to show we have a joint distribution, as the variables range through all their possible values, is equal to one. To that end, Specified conditional distributions are the conditional distributions they notationally represent in the joint distribution. Finally, we show the Markov condition is satisfied. To do this, we need show for $1 \leq k \leq n$ that whenever

$$
\begin{aligned}
& P\left(p a_{k}\right) \neq 0, \text { if } P\left(n d_{k} \mid p a_{k}\right) \neq 0 \\
& \text { and } P\left(x_{k} \mid p a_{k}\right) \neq 0
\end{aligned}
$$

then $P\left(x_{k} \mid n d_{k}, p a_{k}\right)=P\left(x_{k} \mid p a_{k}\right)$,
Where $N D_{k}$ is the set of nondescendents of X_{k} of in G. Since $P A_{k} \subseteq N D_{k}$, we need only show $P\left(x_{k} \mid n d_{k}\right)=P\left(x_{k} \mid p a_{k}\right)$. First for a given k, order the nodes so that all and only nondescendents of X_{k} precede X_{k} in the ordering. Note that this ordering depends on k, whereas the ordering in the first part of the proof does not. Clearly then

$$
N D_{k}=\left\{X_{1}, X_{2}, \ldots . X_{k-1}\right\}
$$

Let

$$
D_{k}=\left\{X_{k+1}, X_{k+2}, \ldots X_{n}\right\}
$$

follows $\sum_{d_{k}}$

We define the $m^{\text {th }}$ cyclotomic field to be the field $Q[x] /\left(\Phi_{m}(x)\right)$ Where $\Phi_{m}(x)$ is the $m^{t h}$ cyclotomic polynomial. $Q[x] /\left(\Phi_{m}(x)\right) \Phi_{m}(x)$ has degree $\varphi(m)$ over Q since $\Phi_{m}(x)$ has degree $\varphi(m)$. The roots of $\Phi_{m}(x)$ are just the primitive $m^{\text {th }}$ roots of unity, so the complex embeddings of $Q[x] /\left(\Phi_{m}(x)\right)$ are simply the $\varphi(m)$ maps
$\sigma_{k}: Q[x] /\left(\Phi_{m}(x)\right) \mapsto C$,
$1 \leq k \prec m,(k, m)=1, \quad$ where

$$
\sigma_{k}(x)=\xi_{m}^{k}
$$

ξ_{m} being our fixed choice of primitive $m^{\text {th }}$ root of unity. Note that $\xi_{m}^{k} \in Q\left(\xi_{m}\right)$ for every k; it follows that $Q\left(\xi_{m}\right)=Q\left(\xi_{m}^{k}\right)$ for all k relatively prime to m. In particular, the images of the σ_{i} coincide, so $Q[x] /\left(\Phi_{m}(x)\right)$ is Galois over Q. This means that we can write $Q\left(\xi_{m}\right)$ for $Q[x] /\left(\Phi_{m}(x)\right)$ without much fear of ambiguity; we will do so from now on, the identification being $\xi_{m} \mapsto x$. One advantage of this is that one can easily talk about cyclotomic fields being extensions of one another,or intersections or compositums; all of these things take place considering them as subfield of C. We now investigate some basic properties of cyclotomic fields. The first issue is whether or not they are all distinct; to determine this, we need to know which roots of unity lie in $Q\left(\xi_{m}\right)$.Note, for example, that if m is odd, then $-\xi_{m}$ is a $2 m^{\text {th }}$ root of unity. We will show that this is the only way in which one can obtain any non- $m^{\text {th }}$ roots of unity.

LEMMA 1.5 If m divides n, then $Q\left(\xi_{m}\right)$ is contained in $Q\left(\xi_{n}\right)$
PROOF. Since $\xi^{n / m}=\xi_{m}$, we have $\xi_{m} \in Q\left(\xi_{n}\right)$, so the result is clear

LEMMA 1.6 If m and n are relatively prime, then

$$
Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{n m}\right)
$$

and

$$
Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q
$$

(Recall the $Q\left(\xi_{m}, \xi_{n}\right)$ is the compositum of $Q\left(\xi_{m}\right)$ and $Q\left(\xi_{n}\right)$)

PROOF. One checks easily that $\xi_{m} \xi_{n}$ is a primitive
$m n^{\text {th }}$ root of unity, so that
$Q\left(\xi_{m n}\right) \subseteq Q\left(\xi_{m}, \xi_{n}\right)$
$\left[Q\left(\xi_{m}, \xi_{n}\right): Q\right] \leq\left[Q\left(\xi_{m}\right): Q\right]\left[Q\left(\xi_{n}: Q\right]\right.$
$=\varphi(m) \varphi(n)=\varphi(m n)$;
Since $\left[Q\left(\xi_{m n}\right): Q\right]=\varphi(m n)$; this implies that $Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{n m}\right)$ We know that $Q\left(\xi_{m}, \xi_{n}\right)$ has degree $\varphi(m n)$ over Q, so we must have

$$
\left[Q\left(\xi_{m}, \xi_{n}\right): Q\left(\xi_{m}\right)\right]=\varphi(n)
$$

and

$$
\left[Q\left(\xi_{m}, \xi_{n}\right): Q\left(\xi_{m}\right)\right]=\varphi(m)
$$

$$
\left[Q\left(\xi_{m}\right): Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)\right] \geq \varphi(m)
$$

And thus that $Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q$
PROPOSITION 1.2 For any m and n

$$
Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{[m, n]}\right)
$$

And
$Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q\left(\xi_{(m, n)}\right) ;$
here $[m, n]$ and (m, n) denote the least common multiple and the greatest common divisor of m and n, respectively.

PROOF. Write $m=p_{1}^{e_{1}} \ldots \ldots p_{k}^{e_{k}}$ and $p_{1}^{f_{1}} \ldots . p_{k}^{f_{k}}$ where the p_{i} are distinct primes. (We allow e_{i} or f_{i} to be zero)
$Q\left(\xi_{m}\right)=Q\left(\xi_{p_{1}^{q^{q}}}\right) Q\left(\xi_{p_{2}^{c^{2}}}\right) \ldots Q\left(\xi_{p_{k}^{e_{k}}}\right)$
and
$Q\left(\xi_{n}\right)=Q\left(\xi_{p_{1}^{f^{f}}}\right) Q\left(\xi_{p_{2}^{j^{\prime}}}\right) \ldots Q\left(\xi_{p_{k}^{f_{k}}}\right)$
Thus

$$
\begin{aligned}
& Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{p_{1}^{q_{1}}}\right) \ldots \ldots . . Q\left(\xi_{p_{2}^{q_{k}}}\right) Q\left(\xi_{p_{1}^{1_{1}}}\right) \ldots Q\left(\xi_{p_{k}^{f_{k}}}\right) \\
& =Q\left(\xi_{p_{1}^{q_{1}}}\right) Q\left(\xi_{p_{1}^{f_{1}}}\right) \ldots Q\left(\xi_{p_{k}^{q_{k}}}\right) Q\left(\xi_{p_{k}^{f_{k}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =Q\left(\xi_{[m, n]}\right) ;
\end{aligned}
$$

An entirely similar computation shows that $Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q\left(\xi_{(m, n)}\right)$

Mutual information measures the information transferred when x_{i} is sent and y_{i} is received, and is defined as
$I\left(x_{i}, y_{i}\right)=\log _{2} \frac{P\left({ }^{x_{i}} / y_{i}\right)}{P\left(x_{i}\right)}$ bits
In a noise-free channel, each y_{i} is uniquely connected to the corresponding x_{i}, and so they constitute an input-output pair $\left(x_{i}, y_{i}\right)$ for which $P\left(x_{i} / y_{j}\right)=1$ and $I\left(x_{i}, y_{j}\right)=\log _{2} \frac{1}{P\left(x_{i}\right)} \quad$ bits; that is, the transferred information is equal to the self-information that corresponds to the input x_{i} In a very noisy channel, the output y_{i} and input x_{i} would be completely uncorrelated, and so $P\left(x_{i} / y_{j}\right)=P\left(x_{i}\right)$ and also $I\left(x_{i}, y_{j}\right)=0$; that is, there is no transference of information. In general, a given channel will operate between these two extremes. The mutual information is defined between the input and the output of a given channel. An average of the calculation of the mutual information for all input-output pairs of a given channel is the average mutual information:
$I(X, Y)=\sum_{i . j} P\left(x_{i}, y_{j}\right) I\left(x_{i}, y_{j}\right)=\sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{P\left(x_{i} / y_{j}\right.}{P\left(x_{i}\right)}\right]$
bits per symbol. This calculation is done over the input and output alphabets. The average mutual information. The following expressions are useful for modifying the mutual information expression:

Vol. 2, Issue 6, November- December 2012, pp.553-584
$P\left(x_{i}, y_{j}\right)=P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)=P\left(y_{j} / x_{i}\right) P\left(x_{i}\right)$
$P\left(y_{j}\right)=\sum_{i} P\left(y_{j} / x_{i}\right) P\left(x_{i}\right)$
$P\left(x_{i}\right)=\sum_{i} P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)$
Then
$I(X, Y)=\sum_{i . j} P\left(x_{i}, y_{j}\right)$
$=\sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{1}{P\left(x_{i}\right)}\right]$
$-\sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{1}{P\left(x_{i} / y_{j}\right)}\right]$ $\begin{aligned} & \sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{1}{P\left(x_{i}\right)}\right] \\ & =\sum_{i}\left[P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)\right] \log _{2} \frac{1}{P\left(x_{i}\right)} \\ & \sum_{i} P\left(x_{i}\right) \log _{2} \frac{1}{P\left(x_{i}\right)}=H(X) \\ & I(X, Y)=H(X)-H(X / Y) \\ & \text { Where } H(X / Y)=\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{1}{P\left(x_{i} / y_{j}\right)}\end{aligned}$
is usually called the equivocation. In a sense, the equivocation can be seen as the information lost in the noisy channel, and is a function of the backward conditional probability. The observation of an output symbol y_{j} provides $H(X)-H(X / Y)$ bits of information. This difference is the mutual information of the channel. Mutual Information: Properties Since

$$
P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)=P\left(y_{j} / x_{i}\right) P\left(x_{i}\right)
$$

The mutual information fits the condition
$I(X, Y)=I(Y, X)$
And by interchanging input and output it is also true that
$I(X, Y)=H(Y)-H(Y / X)$
Where
$H(Y)=\sum_{j} P\left(y_{j}\right) \log _{2} \frac{1}{P\left(y_{j}\right)}$

This last entropy is usually called the noise entropy. Thus, the information transferred through the channel is the difference between the output entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is the difference between the number of bits needed for determining a given input symbol before knowing the corresponding output symbol, and the number of bits needed for determining a given input symbol after knowing the corresponding output symbol $I(X, Y)=H(X)-H(X / Y)$
As the channel mutual information expression is a difference between two quantities, it seems that this parameter can adopt negative values. However, and is spite of the fact that for some $y_{j}, H\left(X / y_{j}\right)$ can be larger than $H(X)$, this is not possible for the average value calculated over all the outputs:
$\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{P\left(x_{i} / y_{j}\right)}{P\left(x_{i}\right)}=\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{P\left(x_{i}, y_{j}\right)}{P\left(x_{i}\right) P\left(y_{j}\right)}$
Then
$-I(X, Y)=\sum_{i, j} P\left(x_{i}, y_{j}\right) \frac{P\left(x_{i}\right) P\left(y_{j}\right)}{P\left(x_{i}, y_{j}\right)} \leq 0$
Because this expression is of the form
$\sum_{i=1}^{M} P_{i} \log _{2}\left(\frac{Q_{i}}{P_{i}}\right) \leq 0$
The above expression can be applied due to the factor $P\left(x_{i}\right) P\left(y_{j}\right)$, which is the product of two probabilities, so that it behaves as the quantity Q_{i}, which in this expression is a dummy variable that fits the condition $\sum_{i} Q_{i} \leq 1$. It can be concluded that the average mutual information is a nonnegative number. It can also be equal to zero, when the input and the output are independent of each other. A related entropy called the joint entropy is defined as

$$
\begin{aligned}
& H(X, Y)=\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{1}{P\left(x_{i}, y_{j}\right)} \\
& =\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{P\left(x_{i}\right) P\left(y_{j}\right)}{P\left(x_{i}, y_{j}\right)} \\
& +\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{1}{P\left(x_{i}\right) P\left(y_{j}\right)}
\end{aligned}
$$

Theorem 1.5: Entropies of the binary erasure channel (BEC) The BEC is defined with an alphabet of two inputs and three outputs, with symbol probabilities.
$P\left(x_{1}\right)=\alpha$ and $P\left(x_{2}\right)=1-\alpha$, and transition probabilities

Akash K Singh / International Journal of Engineering Research and Applications
(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.553-584
$P\left(y_{3} / x_{2}\right)=1-p$ and $P\left(y_{2} / x_{1}\right)=0$,
and $P\left(y_{3} / x_{1}\right)=0$
and $P\left(y_{1} / x_{2}\right)=p$
and $P\left(y_{3} / x_{2}\right)=1-p$
Lemma 1.7. Given an arbitrary restricted timediscrete, amplitude-continuous channel whose restrictions are determined by sets F_{n} and whose density functions exhibit no dependence on the state s, let n be a fixed positive integer, and $p(x)$ an arbitrary probability density function on Euclidean n-space. $p(y \mid x)$ for the density $p_{n}\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots x_{n}\right)$ and F for F_{n} For any real number a, let

$$
\begin{equation*}
A=\left\{(x, y): \log \frac{p(y \mid x)}{p(y)}>a\right\} \tag{1}
\end{equation*}
$$

Then for each positive integer u, there is a code (u, n, λ) such that
$\lambda \leq u e^{-a}+P\{(X, Y) \notin A\}+P\{X \notin F\}$
Where
$P\{(X, Y) \in A\}=\int_{A} \ldots \int p(x, y) d x d y, \quad p(x, y)=p(x) p(y \mid x)$ and

$$
P\{X \in F\}=\int_{F} \ldots \int p(x) d x
$$

Proof: A sequence $x^{(1)} \in F$ such that
$P\left\{Y \in A_{x^{1}} \mid X=x^{(1)}\right\} \geq 1-\varepsilon$
where $A_{x}=\{y:(x, y) \varepsilon A\}$;
Choose the decoding set B_{1} to be $A_{x^{(1)}}$. Having chosen $x^{(1)}, \ldots \ldots ., x^{(k-1)}$ and B_{1}, \ldots, B_{k-1}, select $x^{k} \in F$ such that
$P\left\{Y \in A_{x^{(k)}}-\bigcup_{i=1}^{k-1} B_{i} \mid X=x^{(k)}\right\} \geq 1-\varepsilon ;$
Set $B_{k}=A_{x^{(k)}}-\bigcup_{i=1}^{k-1} B_{i}$, If the process does not terminate in a finite number of steps, then the sequences $x^{(i)}$ and decoding sets $B_{i}, i=1,2, \ldots, u$, form the desired code. Thus assume that the process terminates after t steps. (Conceivably $t=0$). We will show $t \geq u$ by showing that $\varepsilon \leq t e^{-a}+P\{(X, Y) \notin A\}+P\{X \notin F\}$. We proceed as follows.

Let

$$
\begin{aligned}
& B=\bigcup_{j=1}^{t} B_{j} . \quad(\text { If } t=0, \text { take } B=\phi) . \text { Then } \\
& P\{(X, Y) \in A\}=\int_{(x, y) \in A} p(x, y) d x d y
\end{aligned}
$$

$$
=\int_{x} p(x) \int_{y \in A_{x}} p(y \mid x) d y d x
$$

$$
=\int_{x} p(x) \int_{y \in B \cap A_{x}} p(y \mid x) d y d x+\int_{x} p(x)
$$

C. Algorithms

Ideals. Let A be a ring. Recall that an ideal a in A is a subset such that a is subgroup of A regarded as a group under addition;

$$
a \in a, r \in A \Rightarrow r a \in A
$$

The ideal generated by a subset S of A is the intersection of all ideals A containing a ----- it is easy to verify that this is in fact an ideal, and that it consist of all finite sums of the form $\sum r_{i} S_{i}$ with $r_{i} \in A, s_{i} \in S$. When $S=\left\{s_{1}, \ldots ., s_{m}\right\}$, we shall (2) write $\left(s_{1}, \ldots ., s_{m}\right)$ for the ideal it generates.

Let a and b be ideals in A. The set $\{a+b \mid a \in a, b \in b\}$ is an ideal, denoted by $a+b$. The ideal generated by $\{a b \mid a \in a, b \in b\}$ is denoted by $a b$. Note that $a b \subset a \cap b$. Clearly $a b$ consists of all finite sums $\sum a_{i} b_{i}$ with $a_{i} \in a$ and $\quad b_{i} \in b \quad$, and if $a=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ then $a b=\left(a_{1} b_{1}, \ldots, a_{i} b_{j}, \ldots, a_{m} b_{n}\right)$.Let a be an ideal of A. The set of cosets of a in A forms a ring A / a, and $\quad a \mapsto a+a \quad$ is a homomorphism $\phi: A \mapsto A / a$. The map $b \mapsto \phi^{-1}(b)$ is a one to one correspondence between the ideals of A / a and the ideals of A containing a An ideal p if prime if $p \neq A$ and $a b \in p \Rightarrow a \in p$ or $b \in p$. Thus p is prime if and only if A / p is nonzero and has the property that $a b=0, \quad b \neq 0 \Rightarrow a=0, \quad$ i.e., A / p is an integral domain. An ideal m is maximal if $m \neq \mid A$ and there does not exist an ideal n contained strictly between m and A. Thus m is maximal if and only if A / m has no proper nonzero ideals, and so is a field. Note that m maximal \Rightarrow m prime. The ideals of $A \times B$ are all of the form $a \times b$, with a and b ideals in A and B. To see this, note that if c is an ideal in $A \times B$ and

Vol. 2, Issue 6, November- December 2012, pp.553-584
$(a, b) \in c$, then $(a, 0)=(a, b)(1,0) \in c \quad$ and unique polynomials $q, r \in k[X]$ such that $(0, b)=(a, b)(0,1) \in c$. This shows that $c=a \times b$ with
$a=\{a \mid(a, b) \in c$ some $b \in b\}$
and

$$
b=\{b \mid(a, b) \in c \text { some } a \in a\}
$$

Let A be a ring. An A-algebra is a ring B together with a homomorphism $\quad i_{B}: A \rightarrow B \quad$ A homomorphism of A-algebra $B \rightarrow C$ is a homomorphism of rings $\varphi: B \rightarrow C$ such that $\varphi\left(i_{B}(a)\right)=i_{C}(a)$ for all $a \in A$. An A-algebra B is said to be finitely generated (or of finite-type over A) if there exist elements $x_{1}, \ldots, x_{n} \in B$ such that every element of B can be expressed as a polynomial in the x_{i} with coefficients in $i(A)$, i.e., such that the homomorphism $A\left[X_{1}, \ldots, X_{n}\right] \rightarrow B$ sending X_{i} to x_{i} is surjective. A ring homomorphism $A \rightarrow B$ is finite, and B is finitely generated as an A-module. Let k be a field, and let A be a k-algebra. If $1 \neq 0$ in A, then the map $k \rightarrow A$ is injective, we can identify k with its image, i.e., we can regard k as a subring of A. If $1=0$ in a ring R , the R is the zero ring, i.e., $R=\{0\}$.
Polynomial rings. Let k be a field. A monomial in X_{1}, \ldots, X_{n} is an expression of the form $X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}, \quad a_{j} \in N$. The total degree of the monomial is $\sum a_{i}$. We sometimes abbreviate it by $X^{\alpha}, \alpha=\left(a_{1}, \ldots, a_{n}\right) \in \square^{n}$. The elements of the polynomial ring $k\left[X_{1}, \ldots, X_{n}\right]$ are finite sums $\sum c_{a_{1} \ldots a_{n}} X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}, \quad c_{a_{1} \ldots a_{n}} \in k, \quad a_{j} \in \square$ With the obvious notions of equality, addition and multiplication. Thus the monomials from basis for $k\left[X_{1}, \ldots, X_{n}\right]$ as a k-vector space. The ring $k\left[X_{1}, \ldots, X_{n}\right]$ is an integral domain, and the only units in it are the nonzero constant polynomials. A polynomial $f\left(X_{1}, \ldots, X_{n}\right)$ is irreducible if it is nonconstant and has only the obvious factorizations, i.e., $f=g h \Rightarrow g$ or h is constant. Division in $k[X]$. The division algorithm allows us to divide a nonzero polynomial into another: let f and g be polynomials in $k[X]$ with $g \neq 0$; then there exist
$f=q g+r$ with either $r=0$ or $\operatorname{deg} r<\operatorname{deg} g$. Moreover, there is an algorithm for deciding whether $f \in(g)$, namely, find r and check whether it is zero. Moreover, the Euclidean algorithm allows to pass from finite set of generators for an ideal in $k[X]$ to a single generator by successively replacing each pair of generators with their greatest common divisor.
(Pure) lexicographic ordering (lex). Here monomials are ordered by lexicographic(dictionary) order. More precisely, let $\alpha=\left(a_{1}, \ldots a_{n}\right)$ and $\beta=\left(b_{1}, \ldots b_{n}\right)$ be two elements of \square^{n}; then $\alpha>\beta$ and $X^{\alpha}>X^{\beta}$ (lexicographic ordering) if, in the vector difference $\alpha-\beta \in \square$, the left most nonzero entry is positive. For example,
$X Y^{2}>Y^{3} Z^{4} ; \quad X^{3} Y^{2} Z^{4}>X^{3} Y^{2} Z$. Note that this isn't quite how the dictionary would order them: it would put $X X X Y Y Z Z Z Z$ after $X X X Y Y Z$. Graded reverse lexicographic order (grevlex). Here monomials are ordered by total degree, with ties broken by reverse lexicographic ordering. Thus, $\alpha>\beta$ if $\sum a_{i}>\sum b_{i}$, or $\sum a_{i}=\sum b_{i}$ and in $\alpha-\beta$ the right most nonzero entry is negative. For example:
$X^{4} Y^{4} Z^{7}>X^{5} Y^{5} Z^{4}$ (total degree greater)
$X Y^{5} Z^{2}>X^{4} Y Z^{3}, \quad X^{5} Y Z>X^{4} Y Z^{2}$

Orderings on $k\left[X_{1}, \ldots X_{n}\right]$. Fix an ordering on the monomials in $k\left[X_{1}, \ldots X_{n}\right]$. Then we can write an element f of $k\left[X_{1}, \ldots X_{n}\right]$ in a canonical fashion, by re-ordering its elements in decreasing order. For example, we would write

$$
f=4 X Y^{2} Z+4 Z^{2}-5 X^{3}+7 X^{2} Z^{2}
$$

as

$$
\begin{equation*}
f=-5 X^{3}+7 X^{2} Z^{2}+4 X Y^{2} Z+4 Z^{2} \tag{lex}
\end{equation*}
$$

or
$f=4 X Y^{2} Z+7 X^{2} Z^{2}-5 X^{3}+4 Z^{2} \quad$ (grevlex)
Let $\sum a_{\alpha} X^{\alpha} \in k\left[X_{1}, \ldots, X_{n}\right]$, in decreasing order:

$$
f=a_{\alpha_{0}} X^{\alpha_{0}}+{ }_{\alpha_{1}} X^{\alpha_{1}}+\ldots, \quad \alpha_{0}>\alpha_{1}>\ldots, \quad \alpha_{0} \neq 0
$$

Then we define.

- The multidegree of f to be multdeg $(f)=\alpha_{0}$;
- The leading coefficient of f to be LC($\left.{ }^{f}\right)=a_{\alpha_{0}}$;
- The leading monomial of f to be $L M\left({ }^{f}\right)=$ $X^{\alpha_{0}}$;
- The leading term of f to be LT($\left.{ }^{f}\right)=a_{\alpha_{0}} X^{\alpha_{0}}$

For the polynomial $f=4 X Y^{2} Z+\ldots, \quad$ the multidegree is $(1,2,1)$, the leading coefficient is 4 , the leading monomial is $X Y^{2} Z$, and the leading term is $4 X Y^{2} Z$. The division algorithm in $k\left[X_{1}, \ldots X_{n}\right]$. Fix a monomial ordering in \square^{2}. Suppose given a polynomial f and an ordered set $\left(g_{1}, \ldots g_{s}\right)$ of polynomials; the division algorithm then constructs polynomials $a_{1}, \ldots a_{s}$ and r such that $f=a_{1} g_{1}+\ldots+a_{s} g_{s}+r \quad$ Where either $r=0$ or no monomial in r is divisible by any of $L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right) \quad$ Step 1: If $L T\left(g_{1}\right) \mid L T(f)$, divide g_{1} into f to get $f=a_{1} g_{1}+h, \quad a_{1}=\frac{L T(f)}{L T\left(g_{1}\right)} \in k\left[X_{1}, \ldots, X_{n}\right]$ If $L T\left(g_{1}\right) \mid L T(h)$, repeat the process until $f=a_{1} g_{1}+f_{1} \quad$ (different a_{1}) with $L T\left(f_{1}\right)$ not divisible by $L T\left(g_{1}\right)$. Now divide g_{2} into f_{1}, and so on, until $f=a_{1} g_{1}+\ldots+a_{s} g_{s}+r_{1} \quad$ With $L T\left(r_{1}\right)$ not divisible by any $L T\left(g_{1}\right), \ldots L T\left(g_{s}\right)$ Step 2: Rewrite $r_{1}=L T\left(r_{1}\right)+r_{2}$, and repeat Step 1 with for $r_{2} f$
$f=a_{1} g_{1}+\ldots+a_{s} g_{s}+L T\left(r_{1}\right)+r_{3} \quad$ (different $a_{i}{ }^{\prime} s$) Monomial ideals. In general, an ideal a will contain a polynomial without containing the individual terms of the polynomial; for example, the ideal $a=\left(Y^{2}-X^{3}\right)$ contains $Y^{2}-X^{3}$ but not Y^{2} or X^{3}.

DEFINITION 1.5. An ideal a is monomial if $\sum c_{\alpha} X^{\alpha} \in a \Rightarrow X^{\alpha} \in a$
all α with $c_{\alpha} \neq 0$.
PROPOSITION 1.3. Let a be a monomial ideal, and let $A=\left\{\alpha \mid X^{\alpha} \in a\right\}$. Then A satisfies the condition $\alpha \in A, \quad \beta \in \square^{n} \Rightarrow \alpha+\beta \in$
And a is the k-subspace of $k\left[X_{1}, \ldots, X_{n}\right]$ generated by the $X^{\alpha}, \alpha \in A$. Conversely, of A is
a subset of \square^{n} satisfying $(*)$, then the k-subspace a of $k\left[X_{1}, \ldots, X_{n}\right]$ generated by $\left\{X^{\alpha} \mid \alpha \in A\right\}$ is a monomial ideal.

PROOF. It is clear from its definition that a monomial ideal a is the k-subspace of $k\left[X_{1}, \ldots, X_{n}\right]$
generated by the set of monomials it contains. If $X^{\alpha} \in a \underset{\text { and }}{ } X^{\beta} \in k\left[X_{1}, \ldots, X_{n}\right]$.

If a permutation is chosen uniformly and at random from the n ! possible permutations in S_{n}, then the counts $C_{j}^{(n)}$ of cycles of length j are dependent random variables. The joint distribution of $C^{(n)}=\left(C_{1}^{(n)}, \ldots, C_{n}^{(n)}\right)$ follows from Cauchy's formula, and is given by

$$
\begin{equation*}
P\left[C^{(n)}=c\right]=\frac{1}{n!} N(n, c)=1\left\{\sum_{j=1}^{n} j c_{j}=n\right\} \prod_{j=1}^{n}\left(\frac{1}{j}\right)^{c_{j}} \frac{1}{c_{j}!}, \tag{1.1}
\end{equation*}
$$

for $c \in \square_{+}^{n}$.
Lemma1.7 For nonnegative integers
$m_{1, \ldots, \ldots}, m_{n}$,

$$
\begin{equation*}
E\left(\prod_{j=1}^{n}\left(C_{j}^{(n)}\right)^{\left[m_{j}\right]}\right)=\left(\prod_{j=1}^{n}\left(\frac{1}{j}\right)^{m_{j}}\right) 1\left\{\sum_{j=1}^{n} j m_{j} \leq n\right\} \tag{1.4}
\end{equation*}
$$

Proof. This can be established directly by exploiting cancellation of the form $c_{j}^{\left[m_{j}\right]} / c_{j}^{!}=1 /\left(c_{j}-m_{j}\right)!$ when $c_{j} \geq m_{j}$, which occurs between the ingredients in Cauchy's formula and the falling factorials in the moments. Write $m=\sum j m_{j}$. Then, with the first sum indexed by $c=\left(c_{1}, \ldots c_{n}\right) \in \square_{+}^{n}$ and the last sum indexed by $d=\left(d_{1}, \ldots, d_{n}\right) \in \square_{+}^{n}$ via the correspondence $d_{j}=c_{j}-m_{j}$, we have

$$
\begin{aligned}
E\left(\prod_{j=1}^{n}\left(C_{j}^{(n)}\right)^{\left[m_{j}\right]}\right) & =\sum_{c} P\left[C^{(n)}=c\right] \prod_{j=1}^{n}\left(c_{j}\right)^{\left[m_{j}\right]} \\
& =\sum_{c: c_{j} \geq m_{j} \text { for all } j} 1\left\{\sum_{j=1}^{n} j c_{j}=n\right\} \prod_{j=1}^{n} \frac{\left(c_{j}\right)^{\left[m_{j}\right]}}{j^{c_{j}} c_{j}!} \\
& =\prod_{j=1}^{n} \frac{1}{j^{m_{j}}} \sum_{d} 1\left\{\sum_{j=1}^{n} j d_{j}=n-m\right\} \prod_{j=1}^{n} \frac{1}{j^{d_{j}}\left(d_{j}\right)!}
\end{aligned}
$$

This last sum simplifies to the indicator $1(m \leq n)$, corresponding to the fact that if $n-m \geq 0$, then

Vol. 2, Issue 6, November- December 2012, pp.553-584
$d_{j}=0$ for $j>n-m$, and a random permutation Finally, the inclusion-exclusion series for the in S_{n-m} must have some cycle structure $\left(d_{1}, \ldots, d_{n-m}\right)$. The moments of $C_{j}^{(n)}$ follow immediately as

$$
\begin{equation*}
E\left(C_{j}^{(n)}\right)^{[r]}=j^{-r} 1\{j r \leq n\} \tag{1.2}
\end{equation*}
$$

We note for future reference that (1.4) can also be written in the form
$E\left(\prod_{j=1}^{n}\left(C_{j}^{(n)}\right)^{\left[m_{j}\right]}\right)=E\left(\prod_{j=1}^{n} Z_{j}^{\left[m_{j}\right]}\right) 1\left\{\sum_{j=1}^{n} j m_{j} \leq n\right\}$,
Where the Z_{j} are independent Poisson-distribution random variables that satisfy $E\left(Z_{j}\right)=1 / j$

The marginal distribution of cycle counts provides a formula for the joint distribution of the cycle counts C_{j}^{n}, we find the distribution of C_{j}^{n} using a combinatorial approach combined with the inclusion-exclusion formula.

Lemma 1.8. For $1 \leq j \leq n$,

$$
\begin{equation*}
P\left[C_{j}^{(n)}=k\right]=\frac{j^{-k}}{k!} \sum_{l=0}^{[n / j]-k}(-1)^{l} \frac{j^{-l}}{l!} \tag{1.1}
\end{equation*}
$$

Proof. Consider the set I of all possible cycles of length j, formed with elements chosen from $\{1,2, \ldots n\}$, so that $|I|=n^{[j] / j}$. For each $\alpha \in I$, consider the "property" G_{α} of having α; that is, G_{α} is the set of permutations $\pi \in S_{n}$ such that α is one of the cycles of π. We then have $\left|G_{\alpha}\right|=(n-j)!$, since the elements of $\{1,2, \ldots, n\}$ not in α must be permuted among themselves. To use the inclusion-exclusion formula we need to calculate the term S_{r}, which is the sum of the probabilities of the r-fold intersection of properties, summing over all sets of r distinct properties. There are two cases to consider. If the r properties are indexed by r cycles having no elements in common, then the intersection specifies how $r j$ elements are moved by the permutation, and there are $(n-r j)!1(r j \leq n)$ permutations in the intersection.
There are $n^{[r j]} /\left(j^{r} r!\right)$ such intersections. For the other case, some two distinct properties name some element in common, so no permutation can have both these properties, and the r-fold intersection is empty. Thus
$S_{r}=(n-r j)!1(r j \leq n)$
$\times \frac{n^{[r]}}{j^{r} r!} \frac{1}{n!}=1(r j \leq n) \frac{1}{j^{r} r!}$
number of permutations having exactly k properties is

$$
\sum_{l \geq 0}(-1)^{l}\binom{k+l}{l} S_{k+l,}
$$

Which simplifies to (1.1) Returning to the original hat-check problem, we substitute $\mathrm{j}=1$ in (1.1) to obtain the distribution of the number of fixed points of a random permutation. For $k=0,1, \ldots, n$,

$$
\begin{equation*}
P\left[C_{1}^{(n)}=k\right]=\frac{1}{k!} \sum_{l=0}^{n-k}(-1)^{l} \frac{1}{l!} \tag{1.2}
\end{equation*}
$$

and the moments of $C_{1}^{(n)}$ follow from (1.2) with $j=1$. In particular, for $n \geq 2$, the mean and variance of $C_{1}^{(n)}$ are both equal to 1 . The joint distribution of $\left(C_{1}^{(n)}, \ldots, C_{b}^{(n)}\right)$ for any $1 \leq b \leq n$ has an expression similar to (1.7); this too can be derived by inclusion-exclusion. For any $c=\left(c_{1}, \ldots, c_{b}\right) \in \square_{+}^{b}$ with $m=\sum i c_{i}$, $P\left[\left(C_{1}^{(n)}, \ldots, C_{b}^{(n)}\right)=c\right]$

$$
\begin{equation*}
=\left\{\prod_{i=1}^{b}\left(\frac{1}{i}\right)^{c_{i}} \frac{1}{c_{i}!}\right\} \sum_{\substack{l \geq 0 \text { with } \\ \sum i_{i} \leq n-m}}(-1)^{l_{1}+\ldots+l_{b}} \prod_{i=1}^{b}\left(\frac{1}{i}\right)^{l_{i}} \frac{1}{l_{i}!} \tag{1.3}
\end{equation*}
$$

The joint moments of the first b counts $C_{1}^{(n)}, \ldots, C_{b}^{(n)}$ can be obtained directly from (1.2) and (1.3) by setting $m_{b+1}=\ldots=m_{n}=0$

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each fixed j, \quad as $\quad n \rightarrow \infty$, $P\left[C_{j}^{(n)}=k\right] \rightarrow \frac{j^{-k}}{k!} e^{-1 / j}, \quad k=0,1,2, \ldots$,
So that $C_{j}^{(n)}$ converges in distribution to a random variable Z_{j} having a Poisson distribution with mean $1 / j$; we use the notation $C_{j}^{(n)} \rightarrow{ }_{d} Z_{j}$ where $Z_{j} \square P_{o}(1 / j)$ to describe this. Infact, the limit random variables are independent.

Theorem 1.6 The process of cycle counts converges in distribution to a Poisson process of \square with intensity j^{-1}. That is, as $n \rightarrow \infty$, $\left(C_{1}^{(n)}, C_{2}^{(n)}, \ldots\right) \rightarrow_{d}\left(Z_{1}, Z_{2}, \ldots\right)$

Where the $Z_{j}, j=1,2, \ldots, \quad$ are independent Poisson-distributed random variables with $E\left(Z_{j}\right)=\frac{1}{j}$
Proof. To establish the converges in distribution one shows that for each fixed $b \geq 1$, as $n \rightarrow \infty$,

$$
P\left[\left(C_{1}^{(n)}, \ldots, C_{b}^{(n)}\right)=c\right] \rightarrow P\left[\left(Z_{1}, \ldots, Z_{b}\right)=c\right]
$$

Error rates

The proof of Theorem says nothing about the rate of convergence. Elementary analysis can be used to estimate this rate when $b=1$. Using properties of alternating series with decreasing terms, for $k=0,1, \ldots, n$,
$\frac{1}{k!}\left(\frac{1}{(n-k+1)!}-\frac{1}{(n-k+2)!}\right) \leq\left|P\left[C_{1}^{(n)}=k\right]-P\left[Z_{1}=k\right]\right|$ $\leq \frac{1}{k!(n-k+1)!}$

It follows that
$\frac{2^{n+1}}{(n+1)!} \frac{n}{n+2} \leq \sum_{k=0}^{n}\left|P\left[C_{1}^{(n)}=k\right]-P\left[Z_{1}=k\right]\right| \leq \frac{2^{n+1}-1}{(n+1)!}$
Since
$P\left[Z_{1}>n\right]=\frac{e^{-1}}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+\ldots\right)<\frac{1}{(n+1)!}$,
We see from (1.11) that the total variation distance between the distribution $L\left(C_{1}^{(n)}\right)$ of $C_{1}^{(n)}$ and the distribution $L\left(Z_{1}\right)$ of Z_{1}

Establish the asymptotics of $\mathrm{P}\left[A_{n}\left(C^{(n)}\right)\right]$ under conditions $\left(A_{0}\right)$ and $\left(B_{01}\right)$, where

$$
A_{n}\left(C^{(n)}\right)=\bigcap_{1 \leq i \leq n} \bigcap_{r_{i}+1 \leq j \leq r_{i}}\left\{C_{i j}^{(n)}=0\right\}
$$

and $\zeta_{i}=\left(r_{i}^{\prime} / r_{i d}\right)-1=O\left(i^{-g^{\prime}}\right)$ as $i \rightarrow \infty$, for some $g^{\prime}>0$. We start with the expression

$$
P\left[A_{n}\left(C^{(n)}\right)\right]=\frac{P\left[T_{0 m}\left(Z^{\prime}\right)=n\right]}{P\left[T_{0 m}(Z)=n\right]}
$$

$$
\begin{equation*}
\prod_{\substack{1 \leq i \leq n \\ r_{i}+1 \leq j \leq r_{i}}}\left\{1-\frac{\theta}{i r_{i}}\left(1+E_{i 0}\right)\right\} \tag{1.1}
\end{equation*}
$$

$$
\begin{align*}
& P\left[T_{0 n}\left(Z^{\prime}\right)=n\right] \\
& =\frac{\theta d}{n} \exp \left\{\sum_{i \geq 1}\left[\log \left(1+i^{-1} \theta d\right)-i^{-1} \theta d\right]\right\} \\
& \left\{1+O\left(n^{-1} \varphi_{\{1,2,7\}}^{\prime}(n)\right)\right\} \tag{1.2}
\end{align*}
$$

and

$$
\begin{aligned}
& P\left[T_{0 n}\left(Z^{\prime}\right)=n\right] \\
& =\frac{\theta d}{n} \exp \left\{\sum_{i \geq 1}\left[\log \left(1+i^{-1} \theta d\right)-i^{-1} \theta d\right]\right\}
\end{aligned}
$$

$$
\begin{equation*}
\left\{1+O\left(n^{-1} \varphi_{\{1,2,7\}}(n)\right)\right\} \tag{1.3}
\end{equation*}
$$

Where $\varphi_{\{1,2,7\}}^{\prime}(n)$ refers to the quantity derived from Z^{\prime}. It thus follows that $P\left[A_{n}\left(C^{(n)}\right)\right] \square K n^{-\theta(1-d)}$ for a constant K, depending on Z and the r_{i}^{\prime} and computable explicitly from (1.1) - (1.3), if Conditions $\left(A_{0}\right)$ and $\left(B_{01}\right)$ are satisfied and if $\zeta_{i}^{*}=O\left(i^{-g^{\prime}}\right)$ from some $g^{\prime}>0$, since, under these circumstances, both $n^{-1} \varphi_{\{1,2,7\}}^{\prime}(n)$ and $n^{-1} \varphi_{\{1,2,7\}}(n)$ tend to zero as $n \rightarrow \infty$. In particular, for polynomials and square free polynomials, the relative error in this asymptotic approximation is of order n^{-1} if $g^{\prime}>1$.

For $0 \leq b \leq n / 8$ and $n \geq n_{0}$, with n_{0}
$d_{T V}(L(C[1, b]), L(Z[1, b]))$
$\leq d_{T V}(L(C[1, b]), L(Z[1, b]))$
$\leq \varepsilon_{\{7,7\}}(n, b)$,
Where $\varepsilon_{\{7,7\}}(n, b)=O(b / n)$ under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{11}\right)$ Since, by the Conditioning Relation,
$L\left(C[1, b] \mid T_{0 b}(C)=l\right)=L\left(Z[1, b] \mid T_{0 b}(Z)=l\right)$,
It follows by direct calculation that
$d_{T V}(L(C[1, b]), L(Z[1, b]))$
$=d_{T V}\left(L\left(T_{0 b}(C)\right), L\left(T_{0 b}(Z)\right)\right)$
$=\max _{A} \sum_{r \in A} P\left[T_{0 b}(Z)=r\right]$
$\left\{1-\frac{P\left[T_{b n}(Z)=n-r\right]}{P\left[T_{0 n}(Z)=n\right]}\right\}$
Suppressing the argument Z from now on, we thus obtain

$$
\begin{aligned}
& d_{T V}(L(C[1, b]), L(Z[1, b])) \\
& =\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{1-\frac{P\left[T_{b n}=n-r\right]}{P\left[T_{0 n}=n\right]}\right\}_{+} \\
& \leq \sum_{r>n / 2} P\left[T_{0 b}=r\right]+\sum_{r=0}^{[n / 2]} \frac{P\left[T_{0 b}=r\right]}{P\left[T_{0 b}=n\right]} \\
& \times\left\{\sum_{s=0}^{n} P\left[T_{0 b}=s\right]\left(P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right\}_{+}\right. \\
& \leq \sum_{r>n / 2} P\left[T_{0 b}=r\right]+\sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right] \\
& \times \sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{\left.P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right\}}{P\left[T_{0 n}=n\right]} \\
& +\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=r\right] \sum_{s=[n / 2]+1}^{n} P[T=s] P\left[T_{b n}=n-s\right] / P\left[T_{0 n}=n\right]
\end{aligned}
$$

The first sum is at most $2 n^{-1} E T_{0 b}$; the third is bound by

$$
\begin{aligned}
& \left(\max _{n / 2<s \leq n} P\left[T_{0 b}=s\right]\right) / P\left[T_{0 n}=n\right] \\
& \leq \frac{2 \varepsilon_{\{10.5(1)\}}(n / 2, b)}{n} \frac{3 n}{\theta P_{\theta}[0,1]}, \\
& \frac{3 n}{\theta P_{\theta}[0,1]} 4 n^{-2} \phi_{\{10.8\}}^{*}(n) \sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right] \sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{1}{2}|r-s| \\
& \leq \frac{12 \phi_{10.8 s\}}^{*}(n)}{\theta P_{\theta}[0,1]} \frac{E T_{0 b}}{n}
\end{aligned}
$$

Hence we may take

$$
\begin{align*}
& \varepsilon_{\{7,7\}}(n, b)=2 n^{-1} E T_{0 b}(Z)\left\{1+\frac{6 \phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]}\right\} P \\
& +\frac{6}{\theta P_{\theta}[0,1]} \varepsilon_{\{10.5(1)\}}(n / 2, b) \tag{1.5}
\end{align*}
$$

Required order under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{11}\right)$, if $S(\infty)<\infty$. If not, $\phi_{\{10.8\}}^{*}(n)$ can be replaced by $\phi_{\{10.11\}}^{*}(n)$ in the above, which has the required order, without the restriction on the r_{i} implied by $S(\infty)<\infty$. Examining the Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{11}\right)$, it is perhaps surprising to find that $\left(B_{11}\right)$ is required instead of just $\left(B_{01}\right)$; that is, that we should need $\sum_{l \geq 2} l \varepsilon_{i l}=O\left(i^{-a_{1}}\right)$ to hold for some $a_{1}>1$. A first observation is that a
similar problem arises with the rate of decay of $\varepsilon_{i 1}$ as well. For this reason, n_{1} is replaced by n_{1}. This makes it possible to replace condition $\left(A_{1}\right)$ by the weaker pair of conditions $\left(A_{0}\right)$ and $\left(D_{1}\right)$ in the eventual assumptions needed for $\varepsilon_{\{7,7\}}(n, b)$ to be of order $O(b / n)$; the decay rate requirement of order $i^{-1-\gamma}$ is shifted from $\varepsilon_{i 1}$ itself to its first difference. This is needed to obtain the right approximation error for the random mappings example. However, since all the classical applications make far more stringent assumptions about the $\varepsilon_{i 1}, l \geq 2$, than are made in $\left(B_{11}\right)$. The critical point of the proof is seen where the initial estimate of the difference $P\left[T_{b n}^{(m)}=s\right]-P\left[T_{b n}^{(m)}=s+1\right]$. The factor $\varepsilon_{\{10.10\}}(n)$, which should be small, contains a far tail element from n_{1} of the form $\phi_{1}^{\theta}(n)+u_{1}^{*}(n)$, which is only small if $a_{1}>1$, being otherwise of order $O\left(n^{1-a_{1}+\delta}\right)$ for any $\delta>0$, since $a_{2}>1$ is in any case assumed. For $s \geq n / 2$, this gives rise to a contribution of order $O\left(n^{-1-a_{1}+\delta}\right)$ in the estimate of the difference $P\left[T_{b n}=s\right]-P\left[T_{b n}=s+1\right]$, which, in the remainder of the proof, is translated into a contribution of order $O\left(\mathrm{tn}^{-1-a_{1}+\delta}\right)$ for differences of the form $P\left[T_{b n}=s\right]-P\left[T_{b n}=s+1\right]$, finally leading to a contribution of order $b n^{-a_{1}+\delta}$ for any $\delta>0$ in $\varepsilon_{\{7.7\}}(n, b)$. Some improvement would seem to be possible, defining the function g by $g(w)=1_{\{w=s\}}-1_{\{w=s+t\}}$, differences that are of the form $P\left[T_{b n}=s\right]-P\left[T_{b n}=s+t\right]$ can be directly estimated, at a cost of only a single contribution of the form $\phi_{1}^{\theta}(n)+u_{1}^{*}(n)$. Then, iterating the cycle, in which one estimate of a difference in point probabilities is improved to an estimate of smaller order, a bound of the form

$$
\left|P\left[T_{b n}=s\right]-P\left[T_{b n}=s+t\right]\right|=O\left(n^{-2} t+n^{-1-a_{1}+\delta}\right)
$$ for any $\delta>0$ could perhaps be attained, leading to a final error estimate in order $O\left(b n^{-1}+n^{-a_{1}+\delta}\right)$ for any $\delta>0$, to replace $\varepsilon_{\{7.7\}}(n, b)$. This would be of the ideal order $O(b / n)$ for large enough b, but would still be coarser for small b.

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA)
 ISSN: 2248-9622
 www.ijera.com
 Vol. 2, Issue 6, November- December 2012, pp.553-584

With b and n as in the previous section, we wish to show that
$\left|d_{T V}(L(C[1, b]), L(Z[1, b]))-\frac{1}{2}(n+1)^{-1}\right| 1-\theta|E| T_{0 b}-E T_{0 b}| |$ $\leq \varepsilon_{\{7,8\}}(n, b)$,
Where $\quad \varepsilon_{\{7.8\}}(n, b)=O\left(n^{-1} b\left[n^{-1} b+n^{-\beta_{12}+\delta}\right]\right)$ for any $\delta>0$ under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{12}\right)$, with β_{12}. The proof uses sharper estimates. As before, we begin with the formula
$d_{T V}(L(C[1, b]), L(Z[1, b]))$

$$
=\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{1-\frac{P\left[T_{b n}=n-r\right]}{P\left[T_{0 n}=n\right]}\right\}_{+}
$$

Now we observe that

$$
\begin{align*}
& \left|\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{1-\frac{P\left[T_{b n}=n-r\right]}{P\left[T_{0 n}=n\right]}\right\}_{+}-\sum_{r=0}^{[n / 2]} \frac{P\left[T_{0 b}=r\right]}{P\left[T_{0 n}=n\right]}\right| \\
& \times\left|\sum_{s=[n / 2]+1}^{n} P\left[T_{0 b}=s\right]\left(P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right)\right| \\
& \leq 4 n^{-2} E T_{0 b}^{2}+\left(\max _{n / 2<s \leq n} P\left[T_{0 b}=s\right]\right) / P\left[T_{0 n}=n\right] \\
& +P\left[T_{0 b}>n / 2\right] \\
& \leq 8 n^{-2} E T_{0 b}^{2}+\frac{3 \varepsilon_{\{10.5(2)\}}(n / 2, b)}{\theta P_{\theta}[0,1]}, \tag{1.1}
\end{align*}
$$

We have

$$
\begin{aligned}
& \left\lvert\, \sum_{r=0}^{[n / 2]} \frac{P\left[T_{0 b}=r\right]}{P\left[T_{0 n}=n\right]}\right. \\
& \times\left(\left\{\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right]\left(P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right\}_{+}\right.\right. \\
& \left.-\left\{\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1} P\left[T_{0 n}=n\right]\right\}_{+}\right) \mid
\end{aligned}
$$

$$
\leq \frac{1}{n^{2} P\left[T_{0 n}=n\right]} \sum_{r \geq 0} P\left[T_{0 b}=r\right] \sum_{s \geq 0} P\left[T_{0 b}=s\right]|s-r|
$$

$$
\times\left\{\varepsilon_{\{10.14\}}(n, b)+2(r \vee s)|1-\theta| n^{-1}\left\{K_{0} \theta+4 \phi_{\{10.8\}}^{*}(n)\right\}\right\}
$$

$$
\leq \frac{6}{\theta n P_{\theta}[0,1]} E T_{0 b} \varepsilon_{\{10.14\}}(n, b)
$$

$$
+4|1-\theta| n^{-2} E T_{0 b}^{2}\left\{K_{0} \theta+4 \phi_{\{10.8\}}^{*}(n)\right\}
$$

$$
\begin{equation*}
\left.\left(\frac{3}{\theta n P_{\theta}[0,1]}\right)\right\} \tag{1.2}
\end{equation*}
$$

The approximation in (1.2) is further simplified by noting that
$\sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right] \left\lvert\,\left\{\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1}\right\}_{+}\right.$
$-\left\{\sum_{s=0} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1}\right\}_{+}$
$\leq \sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right] \sum_{s \gg n / 2]} P\left[T_{0 b}=s\right] \frac{(s-r)|1-\theta|}{n+1}$
$\leq|1-\theta| n^{-1} E\left(T_{0 b} 1\left\{T_{0 b}>n / 2\right\}\right) \leq 2|1-\theta| n^{-2} E T_{0 b}^{2}$,
and then by observing that
$\sum_{r>n n / 2]} P\left[T_{0 b}=r\right]\left\{\sum_{s \geq 0} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1}\right\}$
$\leq n^{-1}|1-\theta|\left(E T_{0 b} P\left[T_{0 b}>n / 2\right]+E\left(T_{0 b} 1\left\{T_{0 b}>n / 2\right\}\right)\right)$
$\leq 4|1-\theta| n^{-2} E T_{0 b}^{2}$

Combining the contributions of (1.2) -(1.3), we thus find tha

$$
\begin{align*}
& \mid d_{T V}(L(C[1, b]), L(Z[1, b])) \\
& -(n+1)^{-1} \sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{\sum_{s \geq 0} P\left[T_{0 b}=s\right](s-r)(1-\theta)\right\}_{+} \\
& \leq \varepsilon_{\{7.8\}}(n, b) \\
& =\frac{3}{\theta P_{\theta}[0,1]}\left\{\varepsilon_{\{10.5(2)\}}(n / 2, b)+2 n^{-1} E T_{0 b} \varepsilon_{\{10.14\}}(n, b)\right\} \\
& +2 n^{-2} E T_{0 b}^{2}\left\{4+3|1-\theta|+\frac{24|1-\theta| \phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]}\right\} \tag{1.5}
\end{align*}
$$

The quantity $\varepsilon_{\{7.8\}}(n, b)$ is seen to be of the order claimed under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{12}\right)$, provided that $S(\infty)<\infty$; this supplementary condition can be removed if $\phi_{\{10.8\}}^{*}(n)$ is replaced by $\phi_{\{10.11\}}^{*}(n)$ in the definition of $\varepsilon_{\{7.8\}}(n, b)$, has the required order without the restriction on the r_{i} implied by assuming that $S(\infty)<\infty$. Finally, a direct calculation now shows that
$\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{\sum_{s \geq 0} P\left[T_{0 b}=s\right](s-r)(1-\theta)\right\}_{+}$
$=\frac{1}{2}|1-\theta| E\left|T_{0 b}-E T_{0 b}\right|$

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.553-584

Example 1.0. Consider the point $O=(0, \ldots, 0) \in \square^{n}$. For an arbitrary vector r, the coordinates of the point $x=O+r$ are equal to the respective coordinates of the vector $r: x=\left(x^{1}, \ldots x^{n}\right)$ and $r=\left(x^{1}, \ldots, x^{n}\right)$. The vector r such as in the example is called the position vector or the radius vector of the point x. (Or, in greater detail: r is the radius-vector of x w.r.t an origin O). Points are frequently specified by their radiusvectors. This presupposes the choice of O as the "standard origin". Let us summarize. We have considered \square^{n} and interpreted its elements in two ways: as points and as vectors. Hence we may say that we leading with the two copies of $\square^{n}: \square^{n}=$ \{points $\}, \quad \square^{n}=\{$ vectors $\}$

Operations with vectors: multiplication by a number, addition. Operations with points and vectors: adding a vector to a point (giving a point), subtracting two points (giving a vector). \square^{n} treated in this way is called an n-dimensional affine space. (An "abstract" affine space is a pair of sets, the set of points and the set of vectors so that the operations as above are defined axiomatically). Notice that vectors in an affine space are also known as "free vectors". Intuitively, they are not fixed at points and "float freely" in space. From \square^{n} considered as an affine space we can precede in two opposite directions: \square^{n} as an Euclidean space $\Leftarrow \square^{n}$ as an affine space $\Rightarrow \square^{n}$ as a manifold.Going to the left means introducing some extra structure which will make the geometry richer. Going to the right means forgetting about part of the affine structure; going further in this direction will lead us to the so-called "smooth (or differentiable) manifolds". The theory of differential forms does not require any extra geometry. So our natural direction is to the right. The Euclidean structure, however, is useful for examples and applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In \square^{n} considered as an affine space we can already do a good deal of geometry. For example, we can consider lines and planes, and quadric surfaces like an ellipsoid. However, we cannot discuss such things as "lengths", "angles" or "areas" and "volumes". To be able to do so, we have to introduce some more definitions, making \square^{n} a Euclidean space. Namely, we define the length of a vector $a=\left(a^{1}, \ldots, a^{n}\right)$ to be
$|a|:=\sqrt{\left(a^{1}\right)^{2}+\ldots+\left(a^{n}\right)^{2}}$
After that we can also define distances between points as follows:

$$
\begin{equation*}
d(A, B):=|\overrightarrow{A B}| \tag{2}
\end{equation*}
$$

One can check that the distance so defined possesses natural properties that we expect: is it always nonnegative and equals zero only for coinciding points; the distance from A to B is the same as that from B to A (symmetry); also, for three points, A, B and C , we have $d(A, B) \leq d(A, C)+d(C, B) \quad$ (the "triangle inequality"). To define angles, we first introduce the scalar product of two vectors

$$
\begin{equation*}
(a, b):=a^{1} b^{1}+\ldots+a^{n} b^{n} \tag{3}
\end{equation*}
$$

Thus $|a|=\sqrt{(a, a)}$. The scalar product is also denote by dot: $a \cdot b=(a, b)$, and hence is often referred to as the "dot product". Now, for nonzero vectors, we define the angle between them by the equality
$\cos \alpha:=\frac{(a, b)}{|a||b|}$
The angle itself is defined up to an integral multiple of 2π. For this definition to be consistent we have to ensure that the r.h.s. of (4) does not exceed 1 by the absolute value. This follows from the inequality

$$
\begin{equation*}
(a, b)^{2} \leq|a|^{2}|b|^{2} \tag{5}
\end{equation*}
$$

known as the Cauchy-Bunyakovsky-Schwarz inequality (various combinations of these three names are applied in different books). One of the ways of proving (5) is to consider the scalar square of the linear combination $a+t b$, where $t \in R$. As $(a+t b, a+t b) \geq 0$ is a quadratic polynomial in t which is never negative, its discriminant must be less or equal zero. Writing this explicitly yields (5). The triangle inequality for distances also follows from the inequality (5).

Example 1.1. Consider the function $f(x)=x^{i}$ (the i-th coordinate). The linear function $d x^{i}$ (the differential of x^{i}) applied to an arbitrary vector h is simply h^{i}.From these examples follows that we can rewrite $d f$ as

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial f}{\partial x^{n}} d x^{n} \tag{1}
\end{equation*}
$$

which is the standard form. Once again: the partial derivatives in (1) are just the coefficients (depending on $x) ; d x^{1}, d x^{2}, \ldots$ are linear functions giving on an arbitrary vector h its coordinates h^{1}, h^{2}, \ldots, respectively. Hence
$d f(x)(h)=\partial_{h f(x)}=\frac{\partial f}{\partial x^{1}} h^{1}+$
$\ldots+\frac{\partial f}{\partial x^{n}} h^{n}$,
Theorem 1.7. Suppose we have a parametrized curve $t \mapsto x(t)$ passing through $x_{0} \in \square^{n}$ at $t=t_{0}$ and with the velocity vector $x\left(t_{0}\right)=v$ Then $\frac{d f(x(t))}{d t}\left(t_{0}\right)=\partial_{v} f\left(x_{0}\right)=d f\left(x_{0}\right)(v)$

Proof. Indeed, consider a small increment of the parameter $t: t_{0} \mapsto t_{0}+\Delta t$, Where $\Delta t \mapsto 0$. On the other hand, we have $f\left(x_{0}+h\right)-f\left(x_{0}\right)=d f\left(x_{0}\right)(h)+\beta(h)|h| \quad$ for an arbitrary vector h, where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. Combining it together, for the increment of $f(x(t))$ we obtain

$$
\begin{aligned}
& f\left(x\left(t_{0}+\Delta t\right)-f\left(x_{0}\right)\right. \\
& =d f\left(x_{0}\right)(v \cdot \Delta t+\alpha(\Delta t) \Delta t) \\
& +\beta(v \cdot \Delta t+\alpha(\Delta t) \Delta t) \cdot|v \Delta t+\alpha(\Delta t) \Delta t| \\
& =d f\left(x_{0}\right)(v) \cdot \Delta t+\gamma(\Delta t) \Delta t
\end{aligned}
$$

For a certain $\gamma(\Delta t)$ such that $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$ (we used the linearity of $d f\left(x_{0}\right)$). By the definition, this means that the derivative of $f(x(t))$ at $t=t_{0}$ is exactly $d f\left(x_{0}\right)(v)$. The statement of the theorem can be expressed by a simple formula:

$$
\begin{equation*}
\frac{d f(x(t))}{d t}=\frac{\partial f}{\partial x^{1}} x^{1}+\ldots+\frac{\partial f}{\partial x^{n}} x^{n} \tag{2}
\end{equation*}
$$

To calculate the value Of $d f$ at a point x_{0} on a given vector v one can take an arbitrary curve passing Through x_{0} at t_{0} with v as the velocity vector at t_{0} and calculate the usual derivative of $f(x(t))$ at $t=t_{0}$.

Theorem 1.8. For functions $f, g: U \rightarrow \square$, $U \subset \square^{n}$,

$$
\begin{align*}
& d(f+g)=d f+d g \tag{1}\\
& d(f g)=d f \cdot g+f \cdot d g \tag{2}
\end{align*}
$$

Proof. Consider an arbitrary point x_{0} and an arbitrary vector v stretching from it. Let a curve $x(t)$ be such that $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{0}\right)=v$.
Hence
$d(f+g)\left(x_{0}\right)(v)=\frac{d}{d t}(f(x(t))+g(x(t)))$
at $t=t_{0}$ and
$d(f g)\left(x_{0}\right)(v)=\frac{d}{d t}(f(x(t)) g(x(t)))$
at $t=t_{0}$ Formulae (1) and (2) then immediately
follow from the corresponding formulae for the usual derivative Now, almost without change the theory generalizes to functions taking values in \square^{m} instead of \square. The only difference is that now the differential of a map $F: U \rightarrow \square^{m}$ at a point x will be a linear function taking vectors in \square^{n} to vectors in \square^{m} (instead of \square). For an arbitrary vector $h \in \square^{n}$,
$F(x+h)=F(x)+d F(x)(h)$
$+\beta(h)|h|$
Where $\beta(h) \rightarrow 0 \quad$ when $\quad h \rightarrow 0$. We have $d F=\left(d F^{1}, \ldots, d F^{m}\right)$ and
$d F=\frac{\partial F}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial F}{\partial x^{n}} d x^{n}$
$=\left(\begin{array}{ccc}\frac{\partial F^{1}}{\partial x^{1}} & \ldots & \frac{\partial F^{1}}{\partial x^{n}} \\ \ldots & \ldots & \ldots \\ \frac{\partial F^{m}}{\partial x^{1}} & \ldots & \frac{\partial F^{m}}{\partial x^{n}}\end{array}\right)\left(\begin{array}{c}d x^{1} \\ \ldots \\ d x^{n}\end{array}\right)$
In this matrix notation we have to write vectors as vector-columns.

Theorem 1.9. For an arbitrary parametrized curve $x(t)$ in \square^{n}, the differential of a map $F: U \rightarrow \square^{m}$ (where $U \subset \square^{n}$) maps the velocity vector $x(t)$ to the velocity vector of the curve $F(x(t))$ in \square^{m} :
$\frac{d F(x(t))}{d t}=d F(x(t))(\dot{x}(t))$
Proof. By the definition of the velocity vector,
$x(t+\Delta t)=x(t)+x(t) \cdot \Delta t+\alpha(\Delta t) \Delta t$

Where $\alpha(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. By the definition of the differential,

$$
\begin{equation*}
F(x+h)=F(x)+d F(x)(h)+\beta(h) \mid h \tag{3}
\end{equation*}
$$

Where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. we obtain
$F(x(t+\Delta t))=F(x+\underbrace{x(t) \cdot \Delta t+\alpha(\Delta t) \Delta t)}_{h}$
$=F(x)+d F(x)(x(t) \Delta t+\alpha(\Delta t) \Delta t)+$
$\beta(\dot{x}(t) \Delta t+\alpha(\Delta t) \Delta t) .|x(t) \Delta t+\alpha(\Delta t) \Delta t|$
$d F=\frac{\partial F}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial F}{\partial x^{n}} d x^{n}$
$d G=\frac{\partial G}{\partial y^{1}} d y^{1}+\ldots+\frac{\partial G}{\partial y^{n}} d y^{n}$,
Then the chain rule can be expressed as follows:

$$
\begin{equation*}
d(G o F)=\frac{\partial G}{\partial y^{1}} d F^{1}+\ldots+\frac{\partial G}{\partial y^{m}} d F^{m} \tag{3}
\end{equation*}
$$

Where $d F^{i}$ are taken from (1). In other words, to get $d(G o F)$ we have to substitute into (2) the expression for $d y^{i}=d F^{i}$ from (3). This can also be expressed by the following matrix formula:

$$
d(G o F)=\left(\begin{array}{ccc}
\frac{\partial G^{1}}{\partial y^{1}} & \cdots & \frac{\partial G^{1}}{\partial y^{m}} \tag{4}\\
\ldots & \ldots & \ldots \\
\frac{\partial G^{p}}{\partial y^{1}} & \cdots & \frac{\partial G^{p}}{\partial y^{m}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{\partial F^{1}}{\partial x^{1}} & \cdots & \frac{\partial F^{1}}{\partial x^{n}} \\
\cdots & \cdots & \ldots \\
\frac{\partial F^{m}}{\partial x^{1}} & \cdots & \frac{\partial F^{m}}{\partial x^{n}}
\end{array}\right)\left(\begin{array}{c}
d x^{1} \\
\ldots \\
d x^{n}
\end{array}\right)
$$

i.e., if $d G$ and $d F$ are expressed by matrices of partial derivatives, then $d(G o F)$ is expressed by the product of these matrices. This is often written as

$$
\begin{align*}
& \left(\begin{array}{ccc}
\frac{\partial z^{1}}{\partial x^{1}} & \ldots & \frac{\partial z^{1}}{\partial x^{n}} \\
\ldots & \ldots & \ldots \\
\frac{\partial z^{p}}{\partial x^{1}} & \ldots & \frac{\partial z^{p}}{\partial x^{n}}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial z^{1}}{\partial y^{1}} & \ldots & \frac{\partial z^{1}}{\partial y^{m}} \\
\ldots & \ldots & \ldots \\
\frac{\partial z^{p}}{\partial y^{1}} & \ldots & \frac{\partial z^{p}}{\partial y^{m}}
\end{array}\right) \tag{4}\\
& \left(\begin{array}{ccc}
\frac{\partial y^{1}}{\partial x^{1}} & \ldots & \frac{\partial y^{1}}{\partial x^{n}} \\
\ldots & \ldots & \ldots \\
\frac{\partial y^{m}}{\partial x^{1}} & \ldots & \frac{\partial y^{m}}{\partial x^{n}}
\end{array}\right), \tag{5}
\end{align*}
$$

velocity vector x. Basically, we need to know to which vector in \square^{p} it is taken by $d(G o F)$. the curve $(G o F)(x(t)=G(F(x(t))$. By the same theorem, it equals the image under $d G$ of the Anycast Flow vector to the curve $F(x(t))$ in \square^{m}. Applying the theorem once again, we see that the velocity vector to the curve $F(x(t))$ is the image under $d F$ of the vector $x(t)$. Hence $d(G o F)(x)=d G(d F(x))$ for an arbitrary vector x.

Corollary 1.0. If we denote coordinates in \square^{n} by $\left(x^{1}, \ldots, x^{n}\right)$ and in \square^{m} by $\left(y^{1}, \ldots, y^{m}\right)$, and write
$=F(x)+d F(x)(x(t) \Delta t+\gamma(\Delta t) \Delta t$
For some $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. This precisely means that $d F(x) x(t)$ is the velocity vector of $F(x)$. As every vector attached to a point can be viewed as the velocity vector of some curve passing through this point, this theorem gives a clear geometric picture of $d F$ as a linear map on vectors.

Theorem 1.10 Suppose we have two maps $F: U \rightarrow V \quad$ and $\quad G: V \rightarrow W, \quad$ where $U \subset \square^{n}, V \subset \square^{m}, W \subset \square^{p}$ (open domains). Let $F: x \mapsto y=F(x)$. Then the differential of the composite map GoF : $U \rightarrow W$ is the composition of the differentials of F and G :

$$
d(G o F)(x)=d G(y) o d F(x)
$$

Proof. We can use the description of the differential .Consider a curve $x(t)$ in \square^{n} with the

Or
$\frac{\partial z^{\mu}}{\partial x^{a}}=\sum_{i=1}^{m} \frac{\partial z^{\mu}}{\partial y^{i}} \frac{\partial y^{i}}{\partial x^{a}}$,
Where it is assumed that the dependence of $y \in \square^{m}$ on $x \in \square^{n}$ is given by the map F, the dependence of $z \in \square^{p}$ on $y \in \square^{m}$ is given by the map G, and the dependence of $z \in \square^{p}$ on $x \in \square^{n}$ is given by the composition $G o F$.

Definition 1.6. Consider an open domain $U \subset \square^{n}$. Consider also another copy of \square^{n}, denoted for

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA)
 ISSN: 2248-9622
 www.ijera.com
 Vol. 2, Issue 6, November- December 2012, pp.553-584

distinction \square_{y}^{n}, with the standard coordinates $\left(y^{1} \ldots y^{n}\right)$. A system of coordinates in the open domain U is given by a map $F: V \rightarrow U$, where $V \subset \square_{y}^{n}$ is an open domain of \square_{y}^{n}, such that the following three conditions are satisfied :
(1) $\quad F$ is smooth;
(2) $\quad F$ is invertible;
(3) $\quad F^{-1}: U \rightarrow V$ is also smooth

The coordinates of a point $x \in U$ in this system are the standard coordinates of $F^{-1}(x) \in \square_{y}^{n}$
In other words,

$$
\begin{equation*}
F:\left(y^{1} \ldots, y^{n}\right) \mapsto x=x\left(y^{1} \ldots, y^{n}\right) \tag{1}
\end{equation*}
$$

Here the variables $\left(y^{1} \ldots, y^{n}\right)$ are the "new" coordinates of the point x

Example 1.2. Consider a curve in \square^{2} specified in polar coordinates as
$x(t): r=r(t), \varphi=\varphi(t)$
(1)

We can simply use the chain rule. The map $t \mapsto x(t)$ can be considered as the composition of the maps $\quad t \mapsto(r(t), \varphi(t)),(r, \varphi) \mapsto x(r, \varphi)$. Then, by the chain rule, we have
$\dot{x}=\frac{d x}{d t}=\frac{\partial x}{\partial r} \frac{d r}{d t}+\frac{\partial x}{\partial \varphi} \frac{d \varphi}{d t}=\frac{\partial x}{\partial r} r+\frac{\partial x}{\partial \varphi} \dot{\varphi}$
Here r and φ are scalar coefficients depending on t, whence the partial derivatives $\partial x / \partial r, \partial x / \partial \varphi$ are vectors depending on point in \square^{2}. We can compare this with the formula in the "standard" coordinates:
$\dot{x}=e_{1} \dot{x}+e_{2} \dot{y} \quad$. Consider the vectors $\partial x / \partial r, \partial x / \partial \varphi$. Explicitly we have
$\frac{\partial x}{\partial r}=(\cos \varphi, \sin \varphi)$
$\frac{\partial x}{\partial \varphi}=(-r \sin \varphi, r \cos \varphi)$
From where it follows that these vectors make a basis at all points except for the origin (where $r=0$). It is instructive to sketch a picture, drawing vectors corresponding to a point as starting from that point. Notice that $\partial x / \partial r, \partial x / \partial \varphi$ are, respectively, the velocity vectors for the curves $r \mapsto x(r, \varphi)$ $\left(\varphi=\varphi_{0}\right.$ fixed $)$ and
$\varphi \mapsto x(r, \varphi)\left(r=r_{0}\right.$ fixed $)$. We can conclude that for an arbitrary curve given in polar coordinates the velocity vector will have components (r, φ) if as a basis we take $e_{r}:=\partial x / \partial r, e_{\varphi}:=\partial x / \partial \varphi:$
$x=e_{r} r+e_{\varphi} \varphi$
A characteristic feature of the basis e_{r}, e_{φ} is that it is not "constant" but depends on point. Vectors "stuck to points" when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same appearance in all coordinate systems.
Proof. Follows directly from the chain rule and the transformation law for the basis e_{i}. In particular, the elements of the basis $e_{i}=\partial x / \partial x^{i}$ (originally, a formal notation) can be understood directly as the velocity vectors of the coordinate lines $x^{i} \mapsto x\left(x^{1}, \ldots, x^{n}\right) \quad$ (all coordinates but x^{i} are fixed). Since we now know how to handle velocities in arbitrary coordinates, the best way to treat the differential of a map $F: \square^{n} \rightarrow \square^{m}$ is by its action on the velocity vectors. By definition, we set
$d F\left(x_{0}\right): \frac{d x(t)}{d t}\left(t_{0}\right) \mapsto \frac{d F(x(t))}{d t}\left(t_{0}\right)$
Now $d F\left(x_{0}\right)$ is a linear map that takes vectors attached to a point $x_{0} \in \square^{n}$ to vectors attached to the point $F(x) \in \square^{m}$
$d F=\frac{\partial F}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial F}{\partial x^{n}} d x^{n}$

$$
\left(e_{1}, \ldots, e_{m}\right)\left(\begin{array}{cc}
\frac{\partial F^{1}}{\partial x^{1}} & \ldots \tag{2}\\
\frac{\partial F^{1}}{\partial x^{n}} \\
\ldots & \ldots \\
\hline & \ldots \\
\frac{\partial F^{m}}{\partial x^{1}} & \ldots
\end{array}\right)\binom{d F^{1}}{\partial x^{n}}
$$

In particular, for the differential of a function we always have
$d f=\frac{\partial f}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial f}{\partial x^{n}} d x^{n}$,
Where x^{i} are arbitrary coordinates. The form of the differential does not change when we perform a change of coordinates.

Example 1.3 Consider a 1-form in \square^{2} given in the standard coordinates:
$A=-y d x+x d y$ In the polar coordinates we will have $x=r \cos \varphi, y=r \sin \varphi$, hence
$d x=\cos \varphi d r-r \sin \varphi d \varphi$
$d y=\sin \varphi d r+r \cos \varphi d \varphi$
Substituting into A, we get
$A=-r \sin \varphi(\cos \varphi d r-r \sin \varphi d \varphi)$
$+r \cos \varphi(\sin \varphi d r+r \cos \varphi d \varphi)$
$=r^{2}\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right) d \varphi=r^{2} d \varphi$
Hence $A=r^{2} d \varphi$ is the formula for A in the polar coordinates. In particular, we see that this is again a 1-form, a linear combination of the differentials of coordinates with functions as coefficients. Secondly, in a more conceptual way, we can define a 1 -form in a domain U as a linear function on vectors at every point of U : $\omega(v)=\omega_{1} v^{1}+\ldots+\omega_{n} v^{n}$,
If $v=\sum e_{i} v^{i}$, where $e_{i}=\partial x / \partial x^{i}$. Recall that the differentials of functions were defined as linear functions on vectors (at every point), and $d x^{i}\left(e_{j}\right)=d x^{i}\left(\frac{\partial x}{\partial x^{j}}\right)=\delta_{j}^{i}$
every point x.
Theorem 1.9. For arbitrary 1 -form ω and path γ , the integral $\int_{\gamma} \omega$ does not change if we change parametrization of γ provide the orientation remains the same.
Proof: Consider $\quad\left\langle\omega(x(t)), \frac{d x}{d t^{\prime}}\right\rangle \quad$ and $\left\langle\omega\left(x\left(t\left(t^{\prime}\right)\right)\right), \frac{d x}{d t^{\prime}}\right\rangle \mathrm{As}$ $\left\langle\omega\left(x\left(t\left(t^{\prime}\right)\right)\right), \frac{d x}{d t^{\prime}}\right\rangle=\left\lvert\,\left\langle\omega\left(x\left(t\left(t^{\prime}\right)\right)\right), \frac{d x}{d t^{\prime}}\right\rangle \cdot \frac{d t}{d t^{\prime}}\right.$,

Let p be a rational prime and let $K=\square\left(\zeta_{p}\right)$. We write ζ for ζ_{p} or this section. Recall that K has degree $\varphi(p)=p-1$ over \square. We wish to show that $O_{K}=\square[\zeta]$. Note that ζ is a root of $x^{p}-1$, and thus is an algebraic integer; since O_{K} is a ring
we have that $\square[\zeta] \subseteq O_{K}$. We give a proof without assuming unique factorization of ideals. We begin with some norm and trace computations. Let j be an integer. If j is not divisible by p, then ζ^{j} is a primitive $p^{\text {th }}$ root of unity, and thus its conjugates are $\zeta, \zeta^{2}, \ldots, \zeta^{p-1}$. Therefore
$\operatorname{Tr}_{K / \square}\left(\zeta^{j}\right)=\zeta+\zeta^{2}+\ldots+\zeta^{p-1}=\Phi_{p}(\zeta)-1=-1$
If p does divide j, then $\zeta^{j}=1$, so it has only the one conjugate 1 , and $\operatorname{Tr}_{K / \square}\left(\zeta^{j}\right)=p-1$ By linearity of the trace, we find that $\operatorname{Tr}_{K / \square}(1-\zeta)=\operatorname{Tr}_{K / \square}\left(1-\zeta^{2}\right)=\ldots$
$=\operatorname{Tr}_{K / \square}\left(1-\zeta^{p-1}\right)=p$
We also need to compute the norm of $1-\zeta$. For this, we use the factorization

$$
\begin{aligned}
& x^{p-1}+x^{p-2}+\ldots+1=\Phi_{p}(x) \\
& =(x-\zeta)\left(x-\zeta^{2}\right) \ldots\left(x-\zeta^{p-1}\right)
\end{aligned}
$$

Plugging in $x=1$ shows that

$$
p=(1-\zeta)\left(1-\zeta^{2}\right) \ldots\left(1-\zeta^{p-1}\right)
$$

Since the $\left(1-\zeta^{j}\right)$ are the conjugates of $(1-\zeta)$, this shows that $N_{K / \square}(1-\zeta)=p$ The key result for determining the ring of integers O_{K} is the following.

LEMMA 1.9

$$
(1-\zeta) O_{K} \cap \square=p \square
$$

Proof. We saw above that p is a multiple of $(1-\zeta)$ in O_{K}, \quad so the inclusion $(1-\zeta) O_{K} \cap \square \supseteq p \square \quad$ is immediate. Suppose now that the inclusion is strict. Since $(1-\zeta) O_{K} \cap \square$ is an ideal of \square containing $p \square$ and $p \square$ is a maximal ideal of \square, we must have $(1-\zeta) O_{K} \cap \square=\square \quad$ Thus we can write

$$
1=\alpha(1-\zeta)
$$

For some $\alpha \in O_{K}$. That is, $1-\zeta$ is a unit in O_{K}.

COROLLARY 1.1 For any $\alpha \in O_{K}$,
$\operatorname{Tr}_{K / \square}((1-\zeta) \alpha) \in p . \square$
PROOF. We have

Vol. 2, Issue 6, November- December 2012, pp.553-584

$$
\begin{aligned}
& \operatorname{Tr}_{K / \square}((1-\zeta) \alpha)=\sigma_{1}((1-\zeta) \alpha)+\ldots+\sigma_{p-1}((1-\zeta) \alpha) \\
&=\sigma_{1}(1-\zeta) \sigma_{1}(\alpha)+\ldots+\sigma_{p-1}(1-\zeta) \sigma_{p-1}(\alpha) \\
&=(1-\zeta) \sigma_{1}(\alpha)+\ldots+\left(1-\zeta^{p-1}\right) \sigma_{p-1}(\alpha)
\end{aligned}
$$

Where the σ_{i} are the complex embeddings of K (which we are really viewing as automorphisms of K) with the usual ordering. Furthermore, $1-\zeta^{j}$ is a multiple of $1-\zeta$ in O_{K} for every $j \neq 0$. Thus $\operatorname{Tr}_{K / \square}(\alpha(1-\zeta)) \in(1-\zeta) O_{K}$ Since the trace is also a rational integer.

PROPOSITION 1.4 Let p be a prime number and let $K=\mid \square\left(\zeta_{p}\right)$ be the $p^{\text {th }}$ cyclotomic field. Then $O_{K}=\square\left[\zeta_{p}\right] \cong \square[x] /\left(\Phi_{p}(x)\right) ; \quad$ Thus $1, \zeta_{p}, \ldots, \zeta_{p}^{p-2}$ is an integral basis for O_{K}.
PROOF. Let $\alpha \in O_{K}$ and write
$\alpha=a_{0}+a_{1} \zeta+\ldots+a_{p-2} \zeta^{p-2} \quad$ With $a_{i} \in \square$. Then

$$
\begin{aligned}
& \alpha(1-\zeta)=a_{0}(1-\zeta)+a_{1}\left(\zeta-\zeta^{2}\right)+\ldots \\
& +a_{p-2}\left(\zeta^{p-2}-\zeta^{p-1}\right)
\end{aligned}
$$

By the linearity of the trace and our above calculations we find that $\operatorname{Tr}_{K / \square}(\alpha(1-\zeta))=p a_{0}$ We also have
$\operatorname{Tr}_{K / \square}(\alpha(1-\zeta)) \in p \square$, so $a_{0} \in \square \quad$ Next consider the algebraic integer $\left(\alpha-a_{0}\right) \zeta^{-1}=a_{1}+a_{2} \zeta+\ldots+a_{p-2} \zeta^{p-3} ;$ This is an algebraic integer since $\zeta^{-1}=\zeta^{p-1}$ is. The same argument as above shows that $a_{1} \in \square$, and continuing in this way we find that all of the a_{i} are in \square. This completes the proof.

Example 1.4 Let $K=\square$, then the local ring $\square(p)$ is simply the subring of \square of rational numbers with denominator relatively prime to p. Note that this ring $\square_{(p)}$ is not the ring \square_{p} of p-adic integers; to get \square_{p} one must complete $\square{ }_{(p)}$. The usefulness of $O_{K, p}$ comes from the fact that it has a particularly simple ideal structure. Let a be any proper ideal of $O_{K, p}$ and consider the ideal $a \cap O_{K}$ of O_{K}. We claim that $a=\left(a \cap O_{K}\right) O_{K, p}$; That is, that a is generated by the elements of a in $a \cap O_{K}$. It is
clear from the definition of an ideal that $a \supseteq\left(a \cap O_{K}\right) O_{K, p}$. To prove the other inclusion, let α be any element of a. Then we can write $\alpha=\beta / \gamma \quad$ where $\quad \beta \in O_{K} \quad$ and $\quad \gamma \notin p$. In particular, $\beta \in a$ (since $\beta / \gamma \in a$ and a is an ideal), so $\beta \in O_{K}$ and $\gamma \notin p$. so $\beta \in a \cap O_{K}$. Since $\quad 1 / \gamma \in O_{K, p}$, this implies that $\alpha=\beta / \gamma \in\left(a \cap O_{K}\right) O_{K, p}$, as claimed.We can use this fact to determine all of the ideals of $O_{K, p}$. Let a be any ideal of $O_{K, p}$ and consider the ideal factorization of $a \cap O_{K}$ in O_{K}. write it as $a \cap O_{K}=p^{n} b$ For some n and some ideal b, relatively prime to p. we claim first that $b O_{K, p}=O_{K, p}$. We now find that

$$
a=\left(a \cap O_{K}\right) O_{K, p}=p^{n} b O_{K, p}=p^{n} O_{K, p}
$$

Since $b O_{K, p}$. Thus every ideal of $O_{K, p}$ has the form $p^{n} O_{K, p}$ for some n; it follows immediately that $O_{K, p}$ is noetherian. It is also now clear that $p^{n} O_{K, p}$ is the unique non-zero prime ideal in $O_{K, p}$. Furthermore, the inclusion $O_{K} \mapsto O_{K, p} / p O_{K, p}$ Since $p O_{K, p} \cap O_{K}=p$, this map is also surjection, since the residue class of $\alpha / \beta \in O_{K, p}$ (with $\alpha \in O_{K}$ and $\beta \notin p$) is the image of $\alpha \beta^{-1}$ in $O_{K / p}$, which makes sense since β is invertible in $O_{K / p}$. Thus the map is an isomorphism. In particular, it is now abundantly clear that every nonzero prime ideal of $O_{K, p}$ is maximal. To show that $O_{K, p}$ is a Dedekind domain, it remains to show that it is integrally closed in K. So let $\gamma \in K$ be a root of a polynomial with coefficients in $O_{K, p}$; write this polynomial as $x^{m}+\frac{\alpha_{m-1}}{\beta_{m-1}} x^{m-1}+\ldots+\frac{\alpha_{0}}{\beta_{0}} \quad$ With $\quad \alpha_{i} \in O_{K} \quad$ and $\beta_{i} \in O_{K-p}$. Set $\beta=\beta_{0} \beta_{1} \ldots \beta_{m-1}$. Multiplying by β^{m} we find that $\beta \gamma$ is the root of a monic polynomial with coefficients in O_{K}. Thus $\beta \gamma \in O_{K} ; \quad$ since $\quad \beta \notin p, \quad$ we have $\beta \gamma / \beta=\gamma \in O_{K, p}$. Thus $O_{K, p}$ is integrally close in K.
is also not a problem; although a meshed communication network is required rather than the present star network, the bandwidth requirement remains modest. However, such a network introduces other modes of failures like signal delays and the control have to be robust enough to handle them.

B. Regional Voltage Control

Voltage control in North America has always been local, although Europe and China are trying some regional control schemes. FERC recognizes voltage-VAR control as an ancillary service but it has been difficult to develop any auction markets for this service. Control schemes for regional voltage control would be useful in North America as voltage collapse has played a prominent part in all recent blackouts. This type of control, like frequency control, is relatively slow and so the feasibility of the control and communication is not an issue. The main hurdle has been the selection of input and output variables of the controller that can handle all the varied operating conditions that the power system endures. Thus this challenge is a classical one of developing a practical robust controller.

C. Small signal stability control

Small signal instability occurs when a system perturbation, even a small one, excites a natural oscillatory mode of the power system. These oscillations are slow, usually under 1 Hz . The main method used today to guard against small signal instability is the off-line tuning of power system stabilizers (PSS). These PSS are local controllers on the generators. Thus local controllers are used to mitigate system oscillation modes, a procedure that works well for local oscillation modes but not interarea modes. Phasor measurements have already been shown to be very helpful in tracking the oscillation modes and their damping in near real time. New controllers need to be developed that can use system-wide inputs (not necessarily more inputs per controller but input signals from further away). Such remote signal inputs will obviously require a more flexible communication mesh network. Another control concept is to adaptively change the PSS setpoints according to the power system operating conditions. This would be analogous to the AGC control by introducing a secondary control scheme that would periodically adjust the setpoints of the local PSS controllers as the system changes. The challenge here is that the calculation of PSS setpoints requires large analytical calculations, which are today done off-line but will have to be done on-line in this case. The speed of calculation is not a major concern as changing the setpoints can be done quite infrequently, probably minutes.

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA) ISSN: 2248-9622 www.ijera.com
 Vol. 2, Issue 6, November- December 2012, pp.553-584

D. Voltage stability control

Voltage instability occurs when a change in the power system causes an operating condition that is deficient in reactive power support. Guarding against such instability requires the anticipation of such contingencies that can cause voltage instability and taking preventive action. New preventive control schemes are needed that can also include special protection schemes that could isolate those areas with var deficiencies. This is not a stability control in the traditional sense that responds to a disturbance. This is an action plan to ensure that the system operating condition does not stray into an area where a perturbation can cause voltage instability. This calculation requires good contingency analysis which in turn requires a good real time model (state estimator) as discussed in the next section.

E. Transient stability control

The development of such a control scheme is by far the most difficult because a disturbance that can cause instability can only be controlled if a significant amount of computation (analysis) and communication can be accomplished very rapidly. This concept is approached in three increasingly difficult levels:
-the first is to use off-line studies to manually adjust protective schemes which would operate only if the disturbance occurs;
-the second is to automatically adjust these protective schemes with on-line calculations;
-the third and final would be to directly operate the control actions after the disturbance occurs.

F. 'Soft-wired' special protection schemes

A step advance in this direction will be to generalize special protection schemes (SPS) to control transient stability. These SPS today are developed from the results of voluminous offline studies and are implemented with a 'hard-wired' communication system. Thus, the system values and statuses monitored and the breakers controlled cannot be modified. What is proposed here is the development of a generalized communication system that can enable the implementation of new SPS by software modification. Although many phasor measurements and a comprehensive communication scheme will be required in this type of control, the computation requirements will be modest as the control schemes are largely defined off-line.

G. On-line setting of special protection schemes

A step forward will be to develop methods to control transient stability but with less dependence on offline studies and more use of on-line computation. The main idea here is to use more real-time data to determine what control is needed. What is proposed here is the development of soft-computing
techniques using pattern-recognition, neuralnetworks, expert systems, etc. to process the realtime data to decide the best control action. Of course, much off-line training of the software may still be required off-line but the expectation is that the control action would be much more efficient than those purely decided off-line.

H. Real time control of transient stability

The objective here is to develop a global control for transient stability (with no off-line assists). For this to be feasible, the computation needed to determine the disturbance scenario and then computing the necessary controls for stabilization, has to be in the same time-frame as today's protection schemes (milliseconds). Whether this is indeed possible with today's technology is not known. However, the goal here would be to determine what kind of communication-computation structure will be needed to make this feasible.

I. Real Time Modeling (State Estimation)

The state estimator (SE) today runs at the control center EMS using the data from the SCADA real time data and the static database. There are two levels of SEs running today - at the Balancing Authorities (BA) level and at the Reliability Coordinators (RC) level. The BA SCADA gets the real time data from the RTUs and uses that for its SE; it also passes on the same real time data to the ISO level for its SE. To achieve this the BA control centers have to have communication connections to the RC control center. Often the BAs also have communications between themselves to exchange real time data so that each BA SE can construct its own external model. The RC may also exchange such data with neighboring RCs. (It should be noted that many papers assume that the control centers exchange state estimated data for this purpose but this is not the case. So far, only SCADA data is exchanged and moreover, this data is usually not timestamped.) It is expected that the availability of large amounts of phasor measurements will significantly change the nature of state estimators. Let us assume that enough phasor measurements will be available at all substations that voltage angles at all substations will be measured. In that case a mini state estimator can be run within each substation to estimate all complex voltages and all currents out at each substation. Because there are enough redundant measurements within a substation these voltages and currents can be very accurate. In addition, bad data, including switch statuses, can be identified and corrected right at the substation. This processed data would be very different in character than the raw measurement data that is fed to the control center SE today. Because this data includes voltage angles, some have referred to this as state measurement (precluding the need for a state estimator altogether). In reality, the state estimate for

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA) ISSN: 2248-9622 www.ijera.com
 Vol. 2, Issue 6, November- December 2012, pp.553-584

the network will have to be more than just a collection of the complex voltages from the substations. Because there are always some noise and errors in the data, a central state estimator will have to reconcile (get the best fit) from all the measurements received. A major advantage of obtaining complex measurements of voltages and currents is that the estimator equations will be linear and the estimation will not require iterations like the present estimator.

J. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation as an IT Architect and has been designing Mission Critical System and Service Solutions; He has published papers in IEEE and other International Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which conducts research and design of High Performance Smart Grid Services and Systems and design mission critical architecture for High Performance Computing Platform and Computational Intelligence and High Speed Communication systems. He is a member of IEEE (Institute for Electrical and Electronics Engineers), the AAAI (Association for the Advancement of Artificial Intelligence) and the AACR (American Association for Cancer Research). He is the recipient of numerous awards from World Congress in Computer Science, Computer Engineering and Applied Computing 2010, 2011, and IP Multimedia System 2008 and Billing and Roaming 2008. He is active research in the field of Artificial Intelligence and advancement in Medical Systems. He is in Industry for 18 Years where he performed various role to provide the Leadership in Information Technology and Cutting edge Technology.

REFERENCES

[1] Dynamics and Control of Large Electric Power Systems. Ilic, M. and Zaborszky, J. John Wiley \& Sons, Inc. © 2000, p. 756.
[2] Modeling and Evaluation of Intrusion Tolerant Systems Based on Dynamic Diversity Backups. Meng, K. et al. Proceedings of the 2009 International Symposium on Information Processing (ISIP'09). Huangshan, P. R. China, August 21-23, 2009, pp. 101-104
[3] Characterizing Intrusion Tolerant Systems Using A State Transition Model. Gong, F. et al., April 24, 2010.
[4] Energy Assurance Daily, September 27, 2007. U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Infrastructure Security and Energy Restoration Division. April 25, 2010.
[5] CENTIBOTS Large Scale Robot Teams. Konoledge, Kurt et al. Artificial

Intelligence Center, SRI International, Menlo Park, CA 2003.
[6] Handling Communication Restrictions and Team Formation in Congestion Games, Agogino, A. and Tumer, K. Journal of Autonomous Agents and Multi Agent Systems, 13(1):97-115, 2006.
[7] Robotics and Autonomous Systems Research, School of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, Oregon State University
[8] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, "Communication and computation in buildings: A short introduction and overview," IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 35773584, Nov. 2010.
[9] V. C. Gungor and F. C. Lambert, "A survey on communication networks for electric system automation," Comput. Networks, vol. 50, pp. 877-897, May 2006.
[10] S. Paudyal, C. Canizares, and K. Bhattacharya, "Optimal operation of distribution feeders in smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4495-4503, Oct. 2011.
[11] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, "Telecommunications for smart grid: Backhaul solutions for the distribution network," in Proc. IEEE Power and Energy Society General Meeting, Jul. 25-29, 2010, pp. 1-6.
[12] L. Wenpeng, D. Sharp, and S. Lancashire, "Smart grid communication network capacity planning for power utilities," in Proc. IEEE PES, Transmission Distrib. Conf. Expo., Apr. 19-22, 2010, pp. 1-4.
[13] Y. Peizhong, A. Iwayemi, and C. Zhou, "Developing ZigBee deployment guideline under WiFi interference for smart grid applications," IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 110-120, Mar. 2011.
[14] C. Gezer and C. Buratti, "A ZigBee smart energy implementation for energy efficient buildings," in Proc. IEEE 73rd Veh. Technol. Conf. (VTC Spring), May 15-18, 2011, pp. 1-5.
[15] R. P. Lewis, P. Igic, and Z. Zhongfu, "Assessment of communication methods for smart electricity metering in the U.K.," in Proc. IEEE PES/IAS Conf. Sustainable Alternative Energy (SAE), Sep. 2009, pp. 1-4.
[16] A. Yarali, "Wireless mesh networking technology for commercial and industrial customers," in Proc. Elect. Comput. Eng., CCECE,May 1-4, 2008, pp. 000047000052.
[17] M. Y. Zhai, "Transmission characteristics of low-voltage distribution networks in

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.553-584

China under the smart grids environment," IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 173-180, Jan. 2011.
[18] V. Paruchuri, A. Durresi, and M. Ramesh, "Securing powerline communications," in Proc. IEEE Int. Symp. Power Line Commun. Appl., (ISPLC), Apr. 2-4, 2008, pp. 64-69.
[19] Q.Yang, J. A. Barria, and T. C. Green, "Communication infrastructures for distributed control of power distribution networks," IEEE Trans. Ind. Inform., vol. 7, no. 2, pp. 316-327, May 2011.
[20] T. Sauter and M. Lobashov, "End-to-end communication architecture for smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1218-1228, Apr. 2011.
[21] K. Moslehi and R. Kumar, "Smart grid—A reliability perspective," Innovative Smart Grid Technologies (ISGT), pp. 1-8, Jan. 19-21, 2010.
[22] Southern Company Services, Inc., "Comments request for information on smart grid communications requirements," Jul. 2010
[23] R. Bo and F. Li, "Probabilistic LMP forecasting considering load uncertainty," IEEE Trans. Power Syst., vol. 24, pp. 1279-1289, Aug. 2009.
[24] Power Line Communications, H. Ferreira, L. Lampe, J. Newbury, and T. Swart (Editors), Eds. New York: Wiley, 2010.
[25] G. Bumiller, "Single frequency network technology for fast ad hoc communication networks over power lines," WiKuWissenschaftsverlag Dr. Stein 2010.
[31] G. Bumiller, L. Lampe, and H. Hrasnica, "Power line communications for large-scale control and automation systems," IEEE Commun. Mag., vol. 48, no. 4, pp. 106113, Apr. 2010.
[32] M. Biagi and L. Lampe, "Location assisted routing techniques for power line communication in smart grids," in Proc. IEEE Int. Conf. Smart Grid Commun., 2010, pp. 274-278.
[33] J. Sanchez, P. Ruiz, and R. Marin-Perez, "Beacon-less geographic routing made partical: Challenges, design guidelines and protocols," IEEE Commun. Mag., vol. 47, no. 8, pp. 85-91, Aug. 2009.
[34] N. Bressan, L. Bazzaco, N. Bui, P. Casari, L. Vangelista, and M. Zorzi, "The deployment of a smart monitoring system using wireless sensors and actuators networks," in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), 2010, pp. 49-54.
[35] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, "Hydro: A hybrid routing protocol for low-power and lossy networks," in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), 2010, pp. 268-273.
[36] S. Goldfisher and S. J. Tanabe, "IEEE 1901 access system: An overview of its uniqueness and motivation," IEEE Commun. Mag., vol. 48, no. 10, pp. 150157, Oct. 2010.
[37] V. C. Gungor, D. Sahin, T. Kocak, and S. Ergüt, "Smart grid communications and networking," Türk Telekom, Tech. Rep. 11316-01, Apr 2011.

